Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Golub G.H., van Loan C.F. — Matrix Computations
Golub G.H., van Loan C.F. — Matrix Computations



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Matrix Computations

Àâòîðû: Golub G.H., van Loan C.F.

Àííîòàöèÿ:

This third edition offers expanded treatment of areas such as CS decomposition, floating point arithmetic, special linear systems, the unsymmetric Lanczos process, and Toeplitz matrix eigenproblems. Other changes to this edition include some 300 new references and 100 new problems, replacement of LINPACK and EISPACK citations with pointers to LAPACK with key codes tabulated at the beginning of appropriate chapters, and correction of the large number of typographical errors in the previous edition. Copyright © 1999 Book News, Inc., Portland, OR All rights reserved — This text refers to an out of print or unavailable edition of this title.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/×èñëåííàÿ ëèíåéíàÿ àëãåáðà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: third edition

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 694

Äîáàâëåíà â êàòàëîã: 21.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
gmres      548—550
Golub — Kahan SVD step      454—455
Gram — Schmidt, classical      230—231
Gram — Schmidt, modified      231—232
Granularity      284
Growth and Fast Givens transformations      220—221 229
Growth and Gauss reduction to Hessenberg form      349—350
Growth and Gaussian elimination      111 116
Hessenberg form      344—350
Hessenberg form, Arnoldi process and      499—500
Hessenberg form, Gauss reduction to      349
Hessenberg form, Householder reduction to      344—346
Hessenberg form, inverse iteration and      363—364
Hessenberg form, properties      346—348
Hessenberg form, QR factorization and      227
Hessenberg form, QR iteration and      342
Hessenberg form, unreduced      346
Hessenberg systems, LU and      154—155
Hessenberg-Triangular form, reduction to      378—380
Hierarchical memory      41
Holder inequality      153
Horner algorithm      568—569
House      210
Householder bidiagonalization      251—253
Householder matrix      209—215
Hyperbolic transformations      611—613
Hypercube      276
Identity matrix      50
Ill-conditioned matrix      82
Im      14
Implicit Q theorem      346—347 416—417
Implicit symmetric QR step with Wilkinson Shift      420
Implicitly restarted Arnoldi method      501—503
Incomplete block preconditioned      536—537
Incomplete Cholesky      535
Incurable breakdown      505
Indefinite systems      161ff
Independence      49
Inertia of symmetric matrix      403
Inner product, accumulation of      64
Inner product, roundoff error and      62—64
Integrating f(A)      569—570
Interchanges      see “Pivoting”
Interlacing property      396
Intersection of subspaces      604—605
Invariant subspace      372 397—403
Invariant subspace, approximate      400—403
Invariant subspace, dominant      333
Invariant subspace, perturbation of      324—326 397—400
Invariant subspace, Schur vectors and      313
Inverse eigenvalue problems      622—623
Inverse error analysis      see “Backward error analysis”
Inverse iteration      362—364 408
Inverse iteration, generalized eigenproblem      386
Inverse of matrix      50
Inverse of matrix, computation of      121
Inverse of matrix, perturbation of      58—59
Inverse of matrix, Toeplitz case      197
Inverse orthogonal iteration      339
Iteration matrix      512
Iterative improvement for least squares      267—268
Iterative improvement for linear systems      126—128
Iterative methods      508ff
Jacobi iteration for symmetric, cyclic      430
Jacobi iteration for symmetric, eigenproblem      426
Jacobi iteration for symmetric, parallel version      431—434
Jacobi iteration for the SVD      457
Jacobi method for linear systems, preconditioning with      540
Jacobi rotations      426 (See also “Givens rotations”)
Jordan blocks      317
Jordan decomposition      317
Jordan decomposition, computation      370—371
Jordan decomposition, matrix functions and      557 563
Kaniel — Paige theory      475—477
Krylov subspace methods, biconjugate gradients      550—551
Krylov subspace methods, CGNE      546
Krylov subspace methods, CGNR      545
Krylov subspace methods, conjugate gradients      490ff 520ff
Krylov subspace methods, GMRES      548—550
Krylov subspace methods, MINRES      494
Krylov subspace methods, QMR      551
Krylov subspace methods, SYMMLQ      494
Krylov, matrix      347—348 416 472
Krylov, subspaces      472 525 544ff
Lagrange multipliers      582
Lanczos methods for bidiagonalizing      495—496
Lanczos methods for least squares      496—498
Lanczos methods for singular values      495—496
Lanczos methods for symmetric indefinite problems      493—494
Lanczos methods for symmetric positive definite linear systems      490—493
Lanczos methods for unsymmetric eigenproblem      503—506
Lanczos tridiagonalization, block version      485—487 505
Lanczos tridiagonalization, complete reorthogonalization and      482
Lanczos tridiagonalization, conjugate gradients and      528
Lanczos tridiagonalization, interior eigenvalues and      478
Lanczos tridiagonalization, inverse eigenvalue problem and      623
Lanczos tridiagonalization, power method and      477
Lanczos tridiagonalization, practical      480
Lanczos tridiagonalization, Ritz pairs and      475
Lanczos tridiagonalization, roundoff and      481—482
Lanczos tridiagonalization, s-step      487
Lanczos tridiagonalization, selective orthogonalization and      483—484
Lanczos vectors      473
LAPACK      xiii 2. 88 134—135 207—208 310 392—393 580
LDMT      135—138
Least squares problem, basic solution to      258—259
Least squares problem, equality constraints and      585—586
Least squares problem, full rank      236ff
Least squares problem, minimum norm solution to      256
Least squares problem, quadratic ineuqality constraint      580—582
Least squares problem, rank deficient      256ff
Least squares problem, residual of      237
Least squares problem, sensitivity of      242—244
Least squares problem, solution set of      256
Least squares problem, SVD and      257
Least squares solution via, fast Givens      241
Least squares solution via, Householder QR factorization      239
Least squares solution via, Lanczos      486
Least squares solution via, modified Gram — Schmidt      241
Least squares solution via, SVD      257
Length      210
Level of Operation      13
Level-3 fraction      92 146
Levinson algorithm      196
Linear equation sensitivity      80ff
Linear systems, banded systems      152ff
Linear systems, block tridiagonal systems      174—175 177—180
Linear systems, general systems      87ff
Linear systems, Hessenberg      154—155
Linear systems, Kronecker product      180—181
Linear systems, positive definite systems      142ff
Linear systems, symmetric indefinite systems      161ff
Linear systems, Toeplitz systems      193ff
Linear systems, triangular systems      88ff
Linear systems, tridiagonal      156—157
Linear systems, Vandermonde systems      183ff
LINPACK      xiv
load balancing      280 282—283
Local program      285
Log of a matrix      566
Look-ahead      505
Loop reordering      9—13
Loss of orthogonality, Gram — Schmidt      232
Loss of orthogonality, Lanczos      481—482
LR iteration      335 361
LU factorization, band      152—153
LU factorization, block      101
LU factorization, determinant and      97—98
LU factorization, diagonal dominance and      119—120
LU factorization, differentiation of      103
LU factorization, existence of      97—98
LU factorization, rectangular matrices and      102
M1NRES      494
Machine precision      see “Unit roundoff”
Mantissa      60
MATLAB      xiv 88 134 207 309 392 556
Matrix functions      555ff
Matrix functions, integrating      569—570
Matrix functions, Jordan decomposition and      557—558
Matrix functions, polynomial evaluation      568—589
Matrix norms      54ff
Matrix norms, consistency      55
Matrix norms, Frobenius      55
Matrix norms, relations between      56
Matrix norms, subordinate      56
Matrix times matrix, block      25—27 29—30
Matrix times matrix, dot version      11
Matrix times matrix, outer product version      13
Matrix times matrix, parallel      292ff
Matrix times matrix, saxpy version      12
Matrix times matrix, shared memory      292—293
Matrix times matrix, torus      293—299
Matrix times vector      5—6
Matrix times vector, block version      28
Matrix, block      24ff
Matrix, differentation      51
Matrix, equations      13
Matrix, exponential      572ff
Matrix, functions      555ff
Matrix, inverse      50
Matrix, null space of      49
Matrix, operations with      3
Matrix, pencils      375
Matrix, powers      569
Matrix, range of      49
Matrix, rank of      49
Matrix, sign function      372
Matrix, transpose      3
Message-passing      276—277
Minimax theorem for singular values      449
Minimax theorem for symmetric eigenvalues      394
Mixed precision      127
Modified eigenproblems      621—623
Modified Gram — Schmidt      231—232 241
Modified LR algorithm      361
Moore — Penrose conditions      257—258
Multiple eigenvalues and Lanczos tridiagonalization      485
Multiple eigenvalues and matrix functions      560—561
Multiple right hand sides      91 121
Multiplicity of eigenvalues      316
Multipliers      96
Neighbor      276
NETLIB      xiv
Network topology      276
Node program      285
Nonderogatory matrices      349
Nonsingular      50
Normal equations      237—239 545—547
Normal matrix      313—314
Normality and eigenvalue condition      323
Norms, matrix      54ff
Norms, vector      52ff
Notation, block, matrices      24—25
Notation, colon      7 19 27
Notation, matrix      3
Notation, submatrix      27
Notation, vector      4
Notation, x-o      16
NULL      49
Null space      49
Null space, intersection of      602—603
Numerical rank and SVD      260—262
OFF      426
Operation count      see “Work or particular algorithm”
Orthogonal basis      69
Orthogonal complement      69
Orthogonal iteration, Ritz acceleration and      422
Orthogonal iteration, symmetric      410—411
Orthogonal iteration, unsymmetric      332—334
Orthogonal matrix      208
Orthogonal matrix representations, factored form      212—213
Orthogonal matrix representations, Givens rotations      217—218
Orthogonal matrix representations, WY block form      213—215
Orthogonal projection      75
Orthogonal, Procrustes problem      601
Orthonormal basis computation      229—232
Orthonormality      69
Outer product      8
Overdetermined system      236
Overflow      61
Overwriting      23
p-norms      52
p-norms, minimization in      236
Pade approximation      572—574
Parallel computation, Cholesky, message passing ring      300
Parallel computation, divide and conquer      445—446
Parallel computation, gaxpy, message passing ring      279
Parallel computation, gaxpy, shared memory (dynamic)      289—290
Parallel computation, gaxpy, shared memory (static)      287
Parallel computation, Jacobi      431—434
Parallel computation, matrix multiplication, shared memory      292—293
Parallel computation, matrix multiplication, torus      293—299
Parlett — Reid method      162—163
Partitioned matrix      6
Pencils      375
Pencils, diagonalization of      461—462
Pencils, equivalence of      376
Pencils, symmetric-definite      461
Permutation matrices      109—110
Persymmetric matrix      193
Perturbation theory for eigenvalues      320—324
Perturbation theory for eigenvalues (symmetric case)      395—397
Perturbation theory for eigenvectors      326—327
Perturbation theory for eigenvectors (symmetric case)      399—400
Perturbation theory for generalized eigenvalue      377—378
Perturbation theory for invariant subspaces, symmetric case      397—399
Perturbation theory for invariant subspaces, unsymmetric case      324—325
Perturbation theory for least squares problem      242—244
Perturbation theory for linear equation problem      80ff
Perturbation theory for pseudo-inverse      258
Perturbation theory for singular subspace pair      450—451
Perturbation theory for singular values      449—450
Perturbation theory for underdetermined systems      272—273
Pipelining      35—36
Pivoting      109
Pivoting, Aasen      166
Pivoting, column      248—250
Pivoting, complete      117
Pivoting, partial      110
Pivoting, symmetric matrices and      148
Pivots      97
Pivots, condition and      107
Pivots, zero      103
Plane rotations      see “Givens rotations”
Polar decomposition      149
Polynomial preconditioned      539—540
Positive definite systems      140—141
Positive definite systems, $LDL^T$ and      142
Positive definite systems, Gauss — Seidel and      512
Positive definite systems, properties of      141
Positive definite systems, unsymmetric      142
Power method      330—332
Power method, symmetric case      405—406
Power series of matrix      565
Powers of a matrix      569
Pre-conditioners, incomplete block      536—537
Pre-conditioners, incomplete Cholesky      535
Pre-conditioners, polynomial      539—540
Pre-conditioners, unsymmetric case      550
Preconditioned conjugate, gradient method      532ff
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå