Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Donea J., Huerta A. — Finite Element Methods for Flow Problems
Donea J., Huerta A. — Finite Element Methods for Flow Problems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Finite Element Methods for Flow Problems

Авторы: Donea J., Huerta A.

Аннотация:

In recent years there have been significant developments in the development of stable and accurate finite element procedures for the numerical approximation of a wide range of fluid mechanics problems. Taking an engineering rather than a mathematical bias, this valuable reference resource details the fundamentals of stabilised finite element methods for the analysis of steady and time-dependent fluid dynamics problems. Organised into six chapters, this text combines theoretical aspects and practical applications and offers coverage of the latest research in several areas of computational fluid dynamics.
- Coverage includes new and advanced topics unavailable elsewhere in book form
- Collection in one volume of the widely dispersed literature reporting recent progress in this field
- Addresses the key problems and offers modern, practical solutions
Due to the balance between the concise explanation of the theory and the detailed description of modern practical applications, this text is suitable for a wide audience including academics, research centres and government agencies in aerospace, automotive and environmental engineering.


Язык: en

Рубрика: Математика/Численные методы/Конечные элементы/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 350

Добавлена в каталог: 20.02.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Reynolds transport theorem      12
Riemann problem      153
Riemann variables      164
Rotating cone problem      135
Rotating pulse problem, steady      250
Rotating pulse problem, transient      246
Runge — Kutta methods      215—216
Runge — Kutta methods, explicit      217
Runge — Kutta methods, implicit      217 220
Saddle point      273 277
Schur complement matrix      283
Second-order Taylor — Galerkin      98 (See also “Lax — Wendroff method”)
Semi-discrete method      92 94—95 222
Semi-Lagrangian method      80 87—89
SGS      see “Sub-grid scale”
Shock      154
Shock tube problem      202
Shock-capturing techniques      177—180 182 184
Solenoidal velocity field      274—275
Solid boundary      165
Space-time formulation, Galerkin/Least-squares, convection-diffusion      241
Space-time formulation, Galerkin/Least-squares, Euler equations      175
Space-time formulation, Galerkin/Least-squares, pure convection      128
Space-time formulation, pure convection      126
Space-time formulation, time-discontinuous Galerkin      126
Space-time formulation, time-discontinuous least-squares      128
Spatial time derivative      7—8
Speed of sound      161
Spin tensor      267
Stability      98—99
Stability, convection-diffusion, $\theta$ family methods      225
Stability, convection-diffusion, explicit Pads methods      229
Stability, explicit methods      225
Stability, pure convection      130
Stability, pure convection, classical time-stepping schemes      101
Stability, pure convection, Taylor — Galerkin method      110
Stability, pure convection, two-step Taylor — Galerkin method      115
Stability, Runge — Kutta      217
Stabilization matrix      233—234
Stabilization parameter      60
Stabilization parameter, convection-diffusion      64
Stabilization parameter, convection-diffusion-reaction      65
Stabilization parameter, Euler equations      174
Stabilization parameter, higher-order finite elements      65
Stabilization parameter, Navier — Stokes      297
Stabilization parameter, pure convection      129
Stabilization parameter, shock-capturing      185
Stabilization parameter, Stokes      288
Stabilization parameter, transient convection-diffusion-reaction      232
Stabilization techniques      59—60 168 231 233 241
Stabilization techniques, Galerkin/Least-squares      63 128 175 236.
Stabilization techniques, least-squares      120—122 128 237 254
Stabilization techniques, Streamline-upwind Petrov — Galerkin      60 172 236 296
Stabilization techniques, sub-grid scale      63 68 70 237
Stabilization techniques, variational multiscale      68
Stabilization, Euler equations      168 172 174—175
Stabilization, Navier — Stokes equations      296
Stabilization, nearly incompressible flows      187
Stabilization, steady, convection-diffusion      254
Stabilization, steady, convection-diffusion-reaction      59—60
Stabilization, Stokes equations      287
Stabilization, unsteady, convection-diffusion      254
Stabilization, unsteady, convection-diffusion-reaction      231 233 236—237 241
Stabilization, unsteady, pure convection      120—122 128
Stable problem      98
Stokes flow equations      271
Stokes flow equations, Cauchy stress formulation, stress-strain vector form      277
Stokes flow equations, Cauchy stress formulation, strong form      275
Stokes flow equations, Cauchy stress formulation, weak form      275—276
Stokes flow equations, Galerkin      279
Stokes flow equations, matrix problem      281
Stokes flow equations, solvability condition      283
Stokes flow equations, stabilization      287
Stokes flow equations, velocity-pressure formulation, strong form      278
Stokes flow equations, velocity-pressure formulation, weak form      279
Stokes’ law      269
Strain rate tensor      267
Strain rate vector      277
Stream function      272
Streamline-upwind method      55
Streamline-upwind Petrov — Galerkin      60—62 233 236 257
Streamline-upwind Petrov — Galerkin, Euler equations      172—173
Streamline-upwind Petrov — Galerkin, Navier — Stokes      297
Streamline-upwind Petrov — Galerkin, space-time      175
Streamline-upwind test function      58 75
Stress-divergence form      270 275 278—279
Stress-strain vector form      277
Sub-grid scale      64 68—70 233 237
Sub-grid viscosity      68
Superconvergence      64
Supersonic boundaries      166
Supersonic flow      166
SUPG      see “Streamline-upwind Petrov — Galerkin”
System of hyperbolic equations      86
Taylor least-squares method      122
Taylor — Galerkin methods      107
Taylor — Galerkin methods, one-step, fourth-order      113
Taylor — Galerkin methods, one-step, second-order      98 157
Taylor — Galerkin methods, one-step, third-order      108
Taylor — Galerkin methods, two-step, fourth-order      116
Taylor — Galerkin methods, two-step, second-order      158
Taylor — Galerkin methods, two-step, third-order      114
Taylor — Hood element      285—286
Time-discontinuous, Galerkin      126
Time-discontinuous, least-squares      128
Total Lagrangian formulation      5
Total time derivative      84 (See also “Material time derivative”)
Total variation diminishing      118—120 180—181
Transport equation      83
Triangulation      22
Unconditionally stable      225
Uniqueness      25—26 149—150 152—153 165 211 271 283—285 298 300
Updated Lagrangian formulation      5
Vanishing viscosity      153—154
Variational Principle      26
Velocity gradient      267
Viscosity matrix      281—282 290
Viscosity solution      see “Entropy solution”
Von Neumann stability analysis      99
Vorticity tensor      267
wave number      100
Wave vector      100
Weak (or variational) form      24
Weak solution      85 149 153
Weighted residual formulation      24
Well-posed problem      98
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте