Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis
Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Nonlinear Continuum Mechanics for Finite Element Analysis

Авторы: Bonet J., Wood R.D.

Аннотация:

This book provides a look at the theory behind the programs engineers use for the computer simulation of nonlinear structural behaviour. It establishes the mathematical foundations for the development of computer programs that can predict the behaviour of mechanical and structural components. After a thorough but succinct introduction, the book delves into mathematical preliminaries, kinematics, stress and equilibrium. Subsequent sections address hyperelasticity for compressible and incompressible materials, finite element discretisation, equation solution and computer implementation. A short appendix extends the kinematics chapter to cater for elasto-plastic deformation. The book provides user instructions, program description and examples for the FLAGSHYP computer implementation for which the source code is available free on the Internet. Worked examples and exercises complete each chapter, making it an essential resource for engineers and researchers.


Язык: en

Рубрика: Математика/Численные методы/Конечные элементы/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 268

Добавлена в каталог: 20.02.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stress tensor, Cauchy      6 96—100 123 124 129 139 140 143
Stress tensor, deviatoric      112—113
Stress tensor, first Piola — Kirchhoff      107 118
Stress tensor, Kirchhoff      106
Stress tensor, physical interpretations      108 111
Stress tensor, second Piola — Kirchhoff      10 109 110 119 122 124 127 128 131 134 135
Stress vector      172
Stretch      70
Stretch tensor      68–70
Superimposed rigid body motion      92 (see also “Objectivity”)
Surface forces, linearization of      151 (see also “Pressure forces”)
Symmetric tensor      27 41 42
Tangent matrix      17 48
Tangent matrix, assembled      180—182
Tangent matrix, constitutive component, indicial form      175
Tangent matrix, constitutive component, matrix form      177
Tangent matrix, dilatation component      184
Tangent matrix, external force component      179
Tangent matrix, initial stress component      178
Tangent matrix, mean dilatation method      182—184
Tangent matrix, source of      147 174
Tangent modulus      241
Taylor’s series expansion      46
Tensor analysis      see “Gradient divergence
Tensor product      28
Tensor product, components of      31
Tensor product, properties of      29
Third order tensors      37—39
Total potential energy      14 49 154
Trace, properties of      34
Trace, second order tensor      34
Traction vector      97 102 106
Transformation tensor      28
Transpose, second order tensor      27
Trial deformation gradient      236
Truesdell stress rate      114
Truss member      6
Two-point tensor      62 69 71 107
Uniaxial motion      60
User instructions for computer program flagshyp      192
Variational statement, Hu-Washizu      158
Variational statement, total potential energy      154
Vectors      22—26
Vectors, modulus (magnitude) of      34
Vectors, transformation of      24—26
Vectors, vector (cross) product      26
Velocity      81
Velocity gradient      83
Virtual work      15 (see also “Principle of”)
Volume change      73
Volume change, linearized      80
Volume change, rate of      90
Volumetric locking      157 158 182
Volumetric strain energy      131 140
Von Mises plasticity      238
Work conjugacy      106
WWW address      xiv 192
Young’s modulus      7 42 139 143
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте