Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Köthe G. — Topological vector spaces I
Köthe G. — Topological vector spaces I



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Topological vector spaces I

Автор: Köthe G.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1969

Количество страниц: 456

Добавлена в каталог: 24.09.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Riesz — Fischer theorem      142
Riesz, F.      142 200 201
Riesz’s theorem      200
Right inverse      61 66
Right module      121
Right vector space      121
Ritzdorff, K.      122
Robertson, W.      157 211
Rolewicz, S.      161 162 166
Rotund      342
Row      63
Rudin, W.      353
Ruston, F.      336
Rutman, M.A.      336
Saturated      255
Saturated cover      256
Schatten, R.      336
Schauder, J.      166
Schwartz, L.      311 372
Sebastiao e Silva, J.      233 378
Second axiom of countability      20
Second category      28
Section      412
Sectional subspace      410
Semi-finite      109 112
Semi-norm      124 203
Semi-ordered      9
Semi-reflexive      298 304 305 306 307 315 319 320 322 355
Separable      26 126 128 259 260 271 273 280 283 362 370 371 398 400 401 403
Separated      3 187
Separately continuous      171 ff.
Separately equicontmuous      171 ff.
Separation theorem      187 ff. 243 322
Separation theorem for compact convex sets      243
Sequence spaces      405
Sequentially closed      273 313
Sequentially compact      19 310 313
Sequentially complete      89 210 295 296
Sequentially continuous      11 271 383
Set-theoretic product      8
Shirota, T.      380
Shortest distance      343 ff.
Shortness of a vector      106
Sierpinski, W.      165
Silva Dias, C.L. da      378
Similar automorphisms      121 ff.
Simply ordered      9
Small of order N      32
Smith, K.T.      392
Smooth      346 ff.
Smoothly normable      361 ff. 363
Smulian, V.      311 366
Smulian’s theorem      311
Sobczyk, A.      192 428 430
Solution of equations      103
Sphere      24
Square matrix      65
Steinhaus, H.      169
steps      419
Stone, M.H.      334
Straszewicz, S.      337
Strict (LB)-space      223
Strict (LF)-space      223 312 319
Strict closure point      296
Strict inductive limit      222 370
Strictly convex      342 346
Strictly normable      361 ff.
Strictly separated      187 243
Strong bidual      300
Strong derivative      364 ff.
Strong dual      115 257 306 388
Strong topology      see “$\mathfrak{T}$
Stronger topology      5
Strongly bounded      251 252 254
Strongly differentiable      364
Strongly inaccessible      392
Strongly reflexive      115 118
Strongly semi-reflexive      115
Sub-additive      180 188
Sub-base      12
Sub-basis      1
subspace      see “Linear subspace”
Subspace of an involution      428
Sum of mappings      59
Sum of matrices      64
Sum of subspaces      54 152 154 322
Summable      139
Support manifold      330
Supporting facet      336
Supporting hyperplane      193 ff. 244 245 320 349
Symmetric mapping      122
Symmetric sequence space      409
Symmetric vicinity      30
Sz.-Nagy, B.      201
Takenouchi, O.      233
Tangent hyperplane      346
Tensor product      76
Theorem of Alaoglu — Bourbaki      248 264
Theorem of Alexandroff      21
Theorem of Baire      27
Theorem of Banach — Dieudonne      252 254 272
Theorem of Banach — Mackey      252 254
Theorem of Banach — Schauder      166
Theorem of Banach — Steinhaus      169
Theorem of Banach — Stone      334
Theorem of bipolars      246
Theorem of Bourbaki      172
Theorem of Eberlein      313 317 326 366 415
Theorem of Erdoes and Kaplansky      75
Theorem of Grothendieck      269
Theorem of Hahn — Banach      188 ff. 196
Theorem of Kaplansky      312
Theorem of Klee      319 ff.
Theorem of Krein      325 326 336
Theorem of Krein — Milman      331 336 339
Theorem of Lebesgue      324
Theorem of Lefschetz      109 115
Theorem of Mackey      254
Theorem of Mackey — Arens      98 260
Theorem of Mackey — Ulam      392
Theorem of Milman      332 341
Theorem of Milman — Rutman      336 337
Theorem of Montel      373
Theorem of Pontryagin      310
Theorem of Ptak      326
Theorem of Riesz      200
Theorem of Riesz — Fischer      142
Theorem of Smulian      311
Theorem of Tychonoff      18 96
Theorem of Urysohn      44 45
Tillmann, H.G.      378
Toeplitz, O.      48 113 252 378 421 423 432
Topological complement      92 95 99 109 121 156 158 168 238 239 240 424 426
Topological direct sum      84 117 214 288 308
Topological group (abelian)      309
Topological homomorphism      91 150 166
Topological inductive limit      220 224 289 290 403
Topological isomorphism      84 91 125 150
Topological linear space      145
Topological monomorphism      91 150
Topological product      7 8 117 127 149 207 283 296 299 303 368 370 384 389
Topological projective limit      230 ff. 290 294 300
Topological space      1
Topological sum      100
Topological vector space      83 145
Topologically isomorphic      84 125
topology      1
Topology of a uniform space      30
Topology of pointwise convergence      see “$\mathfrak{T}_{p}$
Topology of precompact convergence      see “$\mathfrak{T}_{c}$
Topology of uniform convergence on $\mathfrak{M}$      255
total      132 237 255
Totally bounded      26 36
Totally disconnected      6 83
Totally ordered      9
Transitive      9 227
Translation-invariant      124 147 164
Transposed equation      103
Transposed matrix      74
Triangular matrix      106
Trivial topology      5
Truncated cone      183
Tychonoff space      45
Tychonoff, A.      45 151
Tychonoff’s theorem      18 96
Ulam, S.      392
Ulm, H.      122
Ultrafilter      14
Uniform norm topology      130
Uniform space      29 47
Uniformity      29 386
Uniformizable      43 147
Uniformly continuous      24 32 265
Uniformly convex      353 360 365 366
Uniformly equicontinuous      168
Uniformly normable      361 ff.
Uniformly smooth      363 ff.
Uniformly strongly differentiable      364
Union, $a\vee b$      57
Unionof topologies      5
Upper bound      9
Upper limit      39
Upper semi-continuous      40
Urysohn, P.      42
Urysohn’s embedding theorem      45
Urysohn’s extension theorem      44
Urysohn’s lemma      42
Variation      425
Vector      48
Vector space      48
Vertex      183
Vicinities      29
Vilenkin, N.Y.      121
Weak derivative      349 ff.
Weak dual      235
Weak neighbourhood      85
Weak topology      see “$\mathfrak{T}_{s}$
Weaker topology      5
Weakly complete      89 248
Weakly continuous      237
Weakly convex-compact      316
Weakly differentiable      349
Weakly partially compact      317
Weakly precompact      248
Weil, A.      29 233
Well-ordered      9
Yood, B.      304
Yosida, K.      425
Zelinsky, D.      121
Zeller, K.      424
Zorn, M.      9
Zorn’s Lemma      9 10
“sliding hump”      252 281
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте