Авторизация
Поиск по указателям
Kaye R. — Models of Peano Arithmetic
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Models of Peano Arithmetic
Автор: Kaye R.
Аннотация: Non-standard models of arithmetic are of interest to mathematicians through the presence of infinite integers and the various properties they inherit from the finite integers. Since their introduction in the 1930s, they have come to play an important role in model theory, and in combinatorics through independence results such as the Paris-Harrington theorem. This book is an introduction to these developments, and stresses the interplay between the first-order theory, recursion-theoretic aspects, and the structural properties of these models. Prerequisites for an understanding of the text have been kept to a minimum, these being a basic grounding in elementary model theory and a familiarity with the notions of recursive, primitive recursive, and r.e. sets. Consequently, the book is suitable for postgraduate students coming to the subject for the first time, and a number of exercises of varying degrees of difficulty will help to further the reader's understanding.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1991
Количество страниц: 292
Добавлена в каталог: 02.07.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
MacDowell (v) 96
MacDowell — Specker theorem 96
Macintyre, A. 267 268 270 274
Macpherson, H.D. 272—3
Mal’cev, A.I. 267
Marker, D. 267 268
Matijasevic, Yu. V. 88
Max(...) (maximum) 6 17
Maximum 6 17
McAloon, K. 156 208 218 267 270 274
Mills. G. 270
Min(...) (minimum) 7 17
Min-homogeneous set 208
Minimal extension 268—9
Minimal model 93
Minimali/ation 6 30
Minimum 7 17
Model 2
Model, -like 101
Model, -saturated 181—5 263 268
Model, -homogeneous 259
Model, -like 90 101 165 247 251
Model, -recursively saturated 147 150—3 269
Model, -tall 152
Model, arithmetic 186 188
Model, cardinal of 2
Model, chronically resplendent 252
Model, degree of 268
Model, homogeneous 259 265
Model, minimal y 3
Model, prime 92
Model, recursive 153 265 267
Model, recursively saturated 147 148—50 181 184 223—65 272-3
Model, resplendent 245 248 247—65
Model, rigid 93
Model, short 152
Model, short -recursively saturated 166 269
Model, short-recursively saturated 152 2
Model, tail 152
Modified subtraction 6 19
Modulus 54
Morgenstern, C. 270
MRDP theorem 88 157 274
Multiplicative inverse 56
Murawski, R. 272
Nadel, M. 267 268
Natural deduction 117—19 140
Nelson, E. 271 274
Nonlogical symbol 2
Nonstandard element 11
Nonstandard methods 13 266—7
Nonstandard model 10
Nonstandard model of set theory 223 226 247 265
Nonstandard number 11
Nonstandard structure 10
NP formula, predicate 274
Omitting types theorem 93—5
Open induction 267
Oracle 9 34—5 174-5
Order, dense linear 75
Order, discrete linear 18 73 157
Order-type of a model of arithmetic 75
Ordered ring 20
Overspill 70 71 72 223
Overspill for the standard cut 72 77 155
P = NP problem 274
PA(S) 246—7
Pairing function 62—3 80
Parameter-free collection 134
Parameter-free induction 95—6
Parameter-free PA 95—6
Parameter-free teast-number principle 95—6
Parikh, K 73 273
Parikh’s theorem 70 73 273
Paris — Harrington principle 208 223 247 270
Paris — Harrington Theorem 206 270
Paris, J. (v) (vi) 133 137 138 193 208 218 267 269 270 271 274
Parsons, C. 133
Partial recursive function 5
Path 173
Peano, G 42
Peano-tike theorv 96
Phillips, R.G. 269
Pigeonhole Principle 68 274
Presburger, M. 267
Prime model 92
Prime numbers 21 55—8
Prime numbers, infinitude of 65—7 70
Primitive recursion 6 67
Primitive recursion in an oracle 9
Primitive recursive function 6 67 271
Primitive recursive set 7 67
proof 3 117—19 177—8 251
Provability predicate 41 119
Provably recursive function 51—2 67 194—6
Provably recursive relation 51—2 67 271
Pudlak, P. 274 275
Putnam, H. 88
q 26 46
Q (theory) 26
Quantifier 2
Quantifier for ‘unboundedly many‘ 96—7
Quantifier, block of 79 81
Quantifier, bounded 23
Quantifier, Ramsey 270
Quantifier, ‘part-of‘ 35 107
Quine, W. v.O. 35
Quinsey, J. 218
R 40
R (theory) 30
R, 1 (Godel-numbering) 37 108-10
R.e. set 8
Rabin, M. 269
Rabin’s theorem 269
Ramsey quantifier 270
Ramsey, F. 207
Ramsey’s theorem 207—8 213
Ratajczyk. Z. 272
Readability of formulas 115 237
Readability of terms 111 237
Recursive extension of a language 179 185
Recursive function 7
Recursive language 147 152—3
Recursive model 153 265 267
Recursive saturation 147 148—50 181 184 223—65 272-3
Recursive saturation, sentence for 265
Recursive set 5 7
Recursively enumerable set 8
Recursively inseparable sets 154
Reduct (of a model) 3 246 267
Refinement (of a finite approximation) 235—6
Relation 2
Relative recursion 9 34—5 174-5
Remainder after division 54
Representation (in a theory) of a function or set 35—6 41
Resplendency 245 248
Ressayre, J. P. 184 248
Restriction (of a sequence) 106 172
Rich theory 261 264 268
Ring, discretely ordered 18—19
Ring, ordered 20 (see also Integral domain)
Robinson, A. (v) 70 266—7 272
Robinson, J. 88
Roquette, P. 267
Rosser, J.B. 28 39
Ryll — Nardzewski, C. 132 273
S (successor function) 5 15 47 5
S (theory) 27
S(x) (successor of A) 5
S.t., iff 1
Satisfaction class 224—5 252 255-6
Satisfaction class for languages extending 246 252
Satisfaction class, 245
Satisfaction class, full 224 233
Satisfaction class, full inductive 223 233 272
Satisfaction class, inductive 225 245
Satisfaction class, partial 225 228
Satisfaction class, partial inductive 225 226—8 257
Satisfaction class, standard 224 225
Satisfaction for formulas 122—6 246
Satisfaction for , formulas 104 126—7 223 224 228
Saturation 269 (see also Recursive saturation
Schmerl, J. H. 269 270 272 273
Scott set 174 178 184 186 262—5 268
Scott, D. (v) 174 184
Second-Order Arithmetic 42 27
Second-order collection axiom 102
Second-order induction axiom 42 46
Sequence of 0s and 1s 168 172
Sequence, codes for 31 58 60 64
Sequence, empty 172
Sequence, indiscernible 207 273
Sequence, restrictions of 106 172
Sequence, sequent 117
Set theory, models of negation of axiom of infinity 146
Set theory, models of nonstandard 223 226 247 265
Set, code for 13—14 141—8 172
Shelah, S. 275
Shepherdson, J. 267
Short -recursive saturation 166 269
Short recursive saturation 152 2
Shortness 152
Simmons, H. 193
Simple consistency 38
Simpson, S.G. 270
Skolem, T. (v) 4 10 267
Smith. S.T. 247 272
Smorynski — Stavi theorem 205
Smoryriski, C. 205 265
Smullyan, R. 35
Solovay, R. M 221 270
Specker, E. (v) 96
Stability theory 269
Standard model 10
Standard satisfaction class 224 225
Standard system 141 151—2 159 61-4 268
Stavi, J. 205
Strong interpretation 190—2 225
Structure 2 (see also Model)
Submodel (see Substructure)
Substitution for a variable 116—17
Substring 35 107
Substructure, elementary 4
Substructure, isomorphic 264 (see also Initial segment Friedman’s
Subtraction 6 19
Svenonius, L. 273
Symbiosis 2
Takeuti, G. 275
Tallness 152 (see also -tallness)
Tarski 40 178 316—7
Tarski — Vaught test 4
Tarski — Vaught test for formulas 26
Tarski — Vaught test for formulas 86
Tarski — Vaught test for template (for an proof) 240
Tarski’s definition of truth 3 104 23 225—6
Tennenbaum, S. 153
Tennenbaum’s theorem 153—4 157 178 189—90 267 268
Term 110 148
Term, canonical 128
Term, evaluation of 119—21
Term, unique readability of 111
Theory 3
Total induction 45
TREE 173—4
True arithmetic 10
Truth 10 (see also Tarski)
Tuple 12 (see also Code of a tuple)
Turing 8
Turing degrees of a model 268
TYPE 94 146
Type of a tuple 182 258
Type, 146 160
Type, coded 160 263
Type, complete 94 147
Type, definable 102
Type, omitted 94
Type, over a theory 93—4
Type, over model 146
Type, primitive recursive 149—50
Type, principal 94
Type, r.e 149—50
Type, realized 94
Type, recursive 141 146 146 160
Underspill 70
Unique readability of formulas 115 237
Unique readability of terms 111 237
Universal formula 20 90
Upward Loewenheim — Skolem theorem 4
V, (the variable) 2
Value of a term 119
Van den Dries. L. 267
Variable 2 148
Variable, substitution of 116—7
Vaught, R L. (see Tarski-Vaught test)
Wainer, S. 220
Wiikie. A. 70 267 269 271 274
Wilmers. (i 181 182 184 267—8 272
Woods. A. 274
X - y (modified subtraction) 6
‘part-of‘ quantitication 107
‘part-of‘ relation 35 107
Реклама