Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Chung T.J. — Computational fluid dynamics
Chung T.J. — Computational fluid dynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computational fluid dynamics

Àâòîð: Chung T.J.

Àííîòàöèÿ:

FROM THE PUBLISHER
Computational fluid dynamics (CFD) techniques are used to study and solve complex fluid flow and heat transfer problems. This comprehensive text ranges from elementary concepts for the beginner to state-of-the-art CFD for the practitioner. It discusses and illustrates the basic principles of finite difference (FD), finite element (FE), and finite volume (FV) methods, with step-by-step hand calculations. Chapters go on to examine structured and unstructured grids, adaptive methods, computing techniques, and parallel processing. Finally, the author describes a variety of practical applications to problems in turbulence, reacting flows and combustion, acoustics, combined mode radiative heat transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows. Students and practitioners — particularly in mechanical, aerospace, chemical, and civil engineering — will use this authoritative text to learn about and apply numerical techniques to the solution of fluid dynamics problems.

FROM THE CRITICS
Booknews
This textbook explains the finite difference methods (FDM) and finite element methods (FEM) as applied to the numerical solution of fluid dynamics and heat transfer problems. Both incompressible and compressible flows are treated. The second half of the book presents automatic grid generation strategies, and describes applications to turbulence, acoustics, multiphase flows, and electromagnetic fields. Annotation c. Book News, Inc., Portland, OR (booknews.com)


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/Ìîäåëèðîâàíèå ôèçè÷åñêèõ ïðîöåññîâ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 1022

Äîáàâëåíà â êàòàëîã: 19.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Leonard stress      697
Level set methods      902
Lighthill’s acoustic energy      801
load balancing      664—5
Load balancing dynamic      665
Load balancing static      664 665
Local and global approaches for FEM      309 310 311
Local remeshing      632
Lt norm error      256 385 454
Lumped mass matrix.      359—60
MacCormack scheme      82 85 89 98 105 140 168 515 810
Mach number      29 120 447 828 835
Mach wave      20 30
Magnetohydrodynamics      927—9
Marker and cell (MAC)      106 115 401
Mass (Favre) average      681—2
Mass fraction      726
Mass matrix consistent      359
Mass matrix lumped      359—60
Matrix norm      256
Matrix-by-vector product      659
Maxwell equations      922—9
Mesh enrichment (p) methods      634
Mesh movement (r) methods      629—30
Mesh parameter      258
Mesh refinement (h) methods      618—29
Mesh smoothing      594 595
Meshless methods; see finite point methods MIMD, SIMD      656—8
Minkowski coordinate transformation      962—3
Mixed methods      325 326 399
Mixed/Robin boundary conditions      38—41
Molar concentration      726
Mole fraction      726
Monotonicity condition      152
Monte Carlo methods      528—9
Multi-step method      81
Multiblock structured grids      577—9
Multigrid methods      651—6
Multigrid methods prolongation process      651—5
Multigrid methods restriction process      651—5
Multiplicative Schwarz procedure      644—50
Multitasking      663
Multithreading      662 663 668—73
MUSCL approach      148—50
Natural coordinates      267 278 282
Navier-Stokes system of equations      33—8 166—214 390—407 418—52
Neumann boundary conditions      9 13—18 20—4 38—41 97 310 312 317—20 498
Newton-Raphson method      380 382 741 742 789 881 886
Node-centered control volume      219—23
Noise control      817—22
Nonreflecting boundary conditions      204—5
Number density      726
Numerical diffusion      357 358
Numerical diffusion factor      368—73
Numerical diffusion matrix      358 370
Numerical diffusion test function      367—80
Numerical diffusion test functions.      368—9 370 379 433
Numerical viscosity      153 371
Nusselt number      894
Operator splitting      403 767
Operator splitting methods      403 404
Optical thickness      855 899
Optically thick      861—75
Optically thin      859—73
Optimal control methods      480 879 880—2 894
Optimality condition      637 837
Orr — Sommerfeld equation      411 413
Orthogonality      8 249 613
Outscatter      697
Over-relaxation method      66 99 128
Pade scheme      60
Parabolic equations      31—3 67—73 327—32
Parabolic grid generator      562
Parallel processing      656—65
Partial pressure      726
Particle-in-cell (PIC)      119 528
PDE mapping methods      551—62
Peclet number      183 370 445 733 871
Penalty methods      326 400
Petrov — Galerkin (integral) methods      368 370 374
Petrov — Galerkin test function      377
Phase angle      70
Phase field formulation      902
Phase interaction methods      912 922
PISO      106 112—14 175—7 499 518
Planck’s law      841
Plasma processing      936—46
Point implicit method      197 767
Pointwise error      256
Poisson equations      115 562 645
Potential equation      121—9
Prandtl mixing length model      683
Prandtl number      899
Preconditioned conjugate gradient      382
Preconditioning      178—9 430 647
Predictor-corrector      81—3 140 168
Pressure mode acoustics      798—800
Pressure-correction method      108 401 402
Pressure-strain correlation tensor      691
Primitive variable Jacobian      430 431
Primitive variables      132 434—8
Principal curvature      568
Prism element      302 303
Probability density function      748—51 775 783
Projection method      249
Prolongation process      651—5
Pure convection      391—4
QR algorithm      413
Quadrilateral elements      286—297
Quadtree and octree methods      604
Radiative transfer equation      863
Ramjet combuster      769
Rarefied gas dynamics      931—36
Reconstruction function      163
Reflection wave (reflection boundary)      205
Relativistic hydrodynamics      966—7
Relativistic shock tube      964—5
Relativity general      955—62
Relativity special      955
Reynolds average Navier-Stokes (RANS)      694 696 918
Reynolds number      107 184 370 420 478 899 921
Reynolds stress      447 697
Reynolds stress model      690—2 770
Richardson method      71
Riemann invariants      135
Riemann-Christoffel tensor      566
Ristriction process      651—5
Roe’s approximate Riemann solver      146
Root mean square error      256
Rossland approximation      861
Rotational difference      125
Round-off errors      65
Runge — Kutta method      90 168 766 782
Scatter operation      659—60
Scattering media      880
Schur complement matrix.      646
Schwarzschild metric      959
Scramjet combustion      721—5
Second order variation parameters      183 1287
Semi-implicit pressure correction      405 406
Semiconductor plasma processing      936—46
Sensible enthalpy      724 730 731
Shape functions      see “Interpolation functions”
Shear layer      206
Shock tube problems      455 964 965
Shock wave      120 205
Shock wave boundary layer flow      456—9
Shock-capturing mechanism      189—90
SIMPLE, SIMPLER. SIMPLEC      106 111 118 518 771 895
Singularity      638
Slivers      584
Small perturbation approximations      33 121
Smooth particle hydrodynamics (SPH)      481 482 903
Smoothness      613
Sobolev space      255
Solar corona mass ejection      946—7
Solid angle      843
Sound pressure level      797
Sound wave      29
Space-time continuous      327
Space-time discontinuous      327—5
Space-time Galerkin/least squares      378
Spatial average      681
Spectral element methods      462—77 778
Spectral methods      462
speed of light      955
Speed of sound      29
Speedup factor      656
Splitting methods      81
Spray combustion      736—8 776 781
Stability and accuracy      369—75
Stability conditions numerical      61 70 233 234 369—75
Stability conditions physical      413 829—37
Stephan — Boltzmann law.      842
Stiffness (diffusion or viscosity) matrix      9 251 277 309—17
Stoichiometric condition      726
Stoke’s flow      324—7
Stream function      39 115
Streamline diffusion in GLS      431
Streamline diffusion in GPG      431
Streamline diffusion method (SDM)      243 367
Streamline upwind Petrov-Galerkin (SUPG)      347 374
Subgrid scale model      699
Subgrid stress tensor      697
Subsonic flow      39 120 123
Supersonic flow      30 120 128
Surface grid generator      562—9 574—7
Surface tension      352 904—11
Surface tension force Jacobian      993—8
Surface traction      353
Sutherland’s law      34 421
Taylor series      83 85 86 180 356 368 422 441
Taylor-Galerkin methods (TGM).      355 366 767 830
Temporal parameter      329
Temporal test functions      254—327
Tensor notation (index notation)      246
Test function spatial      8 247 262 308
Test function temporal      328 427 462
Tetrahedral elements      298
Thomas algorithm      76
Threaded parallel program      668—73
Three plus one formulation      957—8
Time average      680—1
Total variation diminishing (TVD) schemes      150—62 189 516 517
Transfinite interpolation (TFI) methods      545—50
Transient problems.      327
Transonic flow      120 123
Trial function      8 247 262 308 462
Triangular elements      273 286
Triangular prism elements      302 303
Tridiagonal matrix algorithm (TDMA)      76
Truncation errors      46—62
Two-phase flows      352 902—24
Two-step explicit scheme      358 359
Two-temperature model      762 791
Unstable waves      829—35 836 837
Unstructured finite element mesh refinements      640—2
Unstructured grid generation      581—605
Upwind scheme      124 516
Upwind scheme first order      142—50
Upwind scheme second order      150—62 440
Variable extrapolation approach      148
Variation parameters (FDV parameters)      181—5 440—51
Variational equation      8 250 319
Variational functional      612
Variational methods      249 251 377 612—7
Variational principles      243 251
Vector pipelines      656
Vibration model      762—3 789
View factors      848—52
Viscosity (diffusion, stiffness ) matrix      9 251 277 309—17
Volume tracking methods      902
Volume-of-fluid methods      902—11
Von Neumann stability analysis      68—71 77—80
Voronoi polygons      582—4
Vortex methods      115—18 406—12
Vorticity mode acoustics      801—3
Vorticity transport equation      117
Wall functions      688—9
Watson algorithm      582—7
Wave equation      87
wave number      9 51 253
Weak form (solution)      9 369
Weight function      611
Weighted residual methods      249 252 462—89
Well-conditioned      257 430 431
Well-posedness      198 201
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå