Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   

Поиск по указателям

Böing H., Koepf W. — Algorithms for q-Hypergeometric Summation in Computer Algebra
Böing H., Koepf W. — Algorithms for q-Hypergeometric Summation in Computer Algebra

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: Algorithms for q-Hypergeometric Summation in Computer Algebra

Авторы: Böing H., Koepf W.


This paper describes three algorithms for q -hypergeometric summation: • a multibasic analogue of Gosper’s algorithm, • the q - Zeilberger algorithm, and • an algorithm for finding q - hypergeometric solutions of linear recurrences together with their Maple implementations, which is relevant both to people being interested in symbolic computation and in q -series. For all these algorithms, the theoretical background is already known and has been described, so we give only short descriptions, and concentrate ourselves on introducing our corresponding Maple implementations by examples. Each section is closed with a description of the input/output specifications of the corresponding Maple command. We present applications to q -analogues of classical orthogonal polynomials. In particular, the connection coefficients between families of q -Askey–Wilson polynomials are computed. Image implementations have been developed for most of these algorithms, whereas to our knowledge only Zeilberger’s algorithm has been implemented in Maple so far (Koornwinder, 1993 or Zeilberger, cf. Pe kov0sek et al., 1996). We made an effort to implement the algorithms as efficient as possible which in the q -PetkovImage ek case led us to an approach with equivalence classes. Hence, our implementation is considerably faster than other ones. Furthermore the q -Gosper algorithm has been generalized to also find formal power series solutions.

Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Нет и не будет

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 23

Добавлена в каталог: 06.06.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2021
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте