Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Beckenbach E.F., Bellman R. — Inequalities
Beckenbach E.F., Bellman R. — Inequalities



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Inequalities

Авторы: Beckenbach E.F., Bellman R.

Аннотация:

Since the classic work on inequalities by Hardy, Littlewood, and Polya in 1934, an enormous amount of effort has been devoted to the sharpening and extension of the classical inequalities, to the discovery of new types of inequalities, and to the application of inqualities in many parts of analysis. As examples, let us cite the fields of ordinary and partial differenlial equations, which aie dominated by inequalities and variational principles involving functions and their derivatives; the many applications of linear inequalities to game theory and mathematical economics, which have triggered a renewed interest in convexity and moment-space theory; and the growing uses of digital computers, which have given impetus to a systematic study of error estimates involving much sophisticated matrix theory and operator theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1 edition

Год издания: 1961

Количество страниц: 198

Добавлена в каталог: 14.04.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
inequality operator      131
Inequality with alternating signs      47 48
Inequality, additive from multiplicative      77
Inequality, complete set of      98 99 102
Inequality, converse      39—45
Inequality, differential      17 18 131—144 168—171
Inequality, discrete      182—185
Inequality, integral      21—23
Inequality, linear      119—121
Inequality, mean-value      23
Inequality, multiplicative from additive      77 78
Inequality, new from old      46 47
Inequality, partial differential      146 163
Inequality, triangle      20 24 55
Information theory      55
Ingham — Siegel integral      65
Ingham, A.E.      55 56 65 66 89 90
Inner product      3 45—47 57 60 61 87 98
Inone, M.      146 160
Input-output matrix      83 84 95
Integral equation, Fredholm theory of      89
Integral equation, Kellogg kernel in      96
Integral inequality      21—23
Integration over groups      8
Interaction theorem      98
Ising problem      94 128
Jackson, L.K.      146 160
Jacobi, K.G.      62 80 143
Jacobson, N.      61 88
Jacobsthal, E.      11 51
Jensen's inequality      18
Jensen, J.L.W.V.      18 51
Jentzsch, R.      93
Jobn, F.      152 162
Kac, M.      113 128 133 148 158
Kaczmarz, S.      123 131
Kalaba, R.      30 52 55 163
Kantorovich, L.V.      54
Karamata's inequality      30—32
Karamata, J.      1 30 31 52 88
Karlin, S.      56 80 81 87 92 94 97 100 101 109 111 120 125 127 133 137
Kellogg kernel      96
Kellogg, O.D.      87 96
Kemeny, J.G.      94
Kernel, reproducing      115 128 129 149
Kerner, E.H.      80 92
Kesten, H.      157 163
Kjellberg, B.      166 175 176 186
Klein, F.      53
Klimko, E.Y.      146 161
Kneser, H.      39 54
Kober, H.      47 54
Koecher, M.      56 87 97
Kolmogoroff, A.      61 88 165 182 185
Konyushkov, A.A.      187
Koranyi, A.      115 128
Korn, A.      165
Kraus, F.      86 96
Krein, M.G.      56 80 81 87 93 94 96 185 188
Kronecker product      79
Kronecker, L.      79 92
Kuhn, H.      120 130
L'Hospital, G.F.A.      16
Lagrange identity      3 60
Lagrange multiplier      5
Lagrange — Beltrami theorem      59
Lagrange, J.L.      1 3 5 59 60 67 179
Landau, E.      100 101 112 114 116 118 127—129 165 185
Landau, H.J.      178 187
Lane, A.M.      86 96
Langenhop, C.E.      131 135 136 157
Langer, R.      163
LaSalle, J.P.      158
Lax, P.D.      38 56 85 95 101 110 124 126 131 135 158 162
Le marquis de Laplace, P.S.      66 125 148 161 163
Lebesgue, H.      118
Lees, M.      158
Lefschetz, S.      157 158 163
Lehman, S.      120 130
Leipnik, R.      55
Lemke, C.E.      119
Leontieff, W.W.      81 83 94 159
Levin, V.I.      166 176 186
Levinson, N.      157 163 179
Levitan, B.      128 132 147 161
Liapunov, A.      115 129 158
Lidskii, V.B.      75 91
Linear inequalities      119—121
Linear programming      94 95 101 120
Liouville, J.      140 142 148 159 162 166 178 179
Lipschitz, R.      90
Littlewood, J.E.      1 31 32 39 51 53 60 129 165 166 177 179 180 182 186
Loewner, C.      56 86 96 157 159
Lojasiewicz, S.      187
Loomis, L.H.      114 121 128 130
Lopes, L.      1 33 35 53 79
Lorch, E.R.      29 50 52 90 92 110
Lorentz space      38
Lorentz, G.G.      1 32 53
Lorentz, H.A.      38 53
Lowdenslager, D.      88 97
Lueroth, J.      51
Lyapunov, A.      92 166 188
Mabler, K.      1 29 51 97
Mac Duffee, C.C.      61 79 88 92
Maclaurin, C.      11 50
Madansky, A.      45 54
Mairhuber, J.C.      87 97
Majorization      7 8
Mallows, C.L.      100 103 105 116 126
Mandelbrojt, S.      165 185
Maradudin, A.      113 128
Marcienkiewicz, J.      30 52
Marcus — Lopes Inequality      33—35
Marcus, M.      1 33 35 53 64 79 89 92
Markoff matrix      93
Markoff, A.A.      80 85 87 88 92 93 139 158 165 185
Markovian decision process      85 87
Marshall, A.      88 97
Masani, P.      88 97
Massera, J.L.      118 129 139 159
Mathias, M.      100 114 125
Matrix exponential      137
Matrix, adjugate      79 80
Matrix, completely positive      96
Matrix, complex      55 57
Matrix, complex with positive definite real part      62
Matrix, compound      79 80
Matrix, doubly stochastic      31
Matrix, hermitian      55—57
Matrix, hermitian, positive definite      57 64
Matrix, input-output      83 84 94 138
Matrix, Markoff      80 93
Matrix, modular function      90
Matrix, nonnegative      93
Matrix, nonnegative definite      57
Matrix, nonnegative definite, principal minors of      58
Matrix, orthogonal      93
Matrix, positive      56 80
Matrix, positive definite      3 55—64 87
Matrix, positive definite as sum of squares      58 59
Matrix, positive definite, principal minors of      57—59
Matrix, positive indefinite      57
Matrix, stability      88
Matrix, stochastic      80
Matrix, symmetric      57
Matrix, Toeplitz      113 128
Matrix, trace of      66 70 87
Matrix, unitary      93
Maximum principle      132 133
McGregor, J.L.      56 79 80 87 92 97 133
McNabb, A.      154 162
Mean of order t      16
Mean, arithmetic-geometric      10 11
Mean-value inequality      23
Mean-value theorem      144 146 147 149 150 161
Menger, K.      55
Mewborn, A.C.      81 94
Min-max theorem of Fischer      72 73
Min-max theorem of von Neumann      83 120 121
Minkowski's inequality      19—27
Minkowski's inequality for products      26
Minkowski, H.      1 12 19—29 36 51 70 89 90 94—97 101—104 118 119 129 159
Mirsky, L.      31 53 65 71 75 77 89 91 92
Mixed volume      29 90
Mlak, W.      133 154 162
Moffert, C.F.      61 88
Mohr, E.      46 54
moment      99
Moment sequence      102 112
Moment space      28 39 45 99 102—110
Moment, trigonometric      99
Montroll, E.W.      80 92
Morgenstern, O.      81 83 94 120 129 130
Motzkin, T.      119 129 145 160
Moyal, J.E.      55
Moyls, B.N.      79 92
Murdock, L.      113 128
Murnaghan, F.D.      38 53
Murray, F.J.      94
Narasimhan, R.      154 162
Nemyckii, V.V.      135 158
Nerlove, M.      81 94
Nevanlinna, R.      115 128
New inequalities from old      46 47
Newman, J.      130
Newton, I.      53 163
Neyman — Pearson lemma      121—123
Neyman, J.      101 121 126
Nikaido, H.      119 130
Nirenberg, L.      165 185
Noll, W.      46 54
Nonconvex space      105 115 116
Noneuclidean geometry      39
Nonlinear function as envelope of linear functions      23
Nonnegative definite matrix      57
Nonnegative definite matrix, principal minors of      58
Nonnegative matrix      93
Norm      16 28
Northcott — Bellman inequality      183 184
Northcott, D.G.      166 182 183 186
Nurenberg, L.      133 148 161 168
Ogura, K.      23 51
Olkin, I.      2 48 49 54 55 64—66 88—90 97
Operator inequality      131
Operator, adjoint      79
Operator, differential      131—134 142—144 164—188
Operator, dissipative      88
Operator, parabolic      150—153
Operator, partial differential      132
Operator, positive      56 93 131 140 147—157
Operator, variation-dimishing      86 87 133
Opial, Z.      137 159
Oppenheim's inequality      71
Oppenheim, A.      71 91
Orden, A.      120 129
Order-disorder theory      113 128
Orthant      84 93
Orthogonal matrix      93
Orthogonal projection      123 124
Osserman, R.      157 163
Ostrowki's inequality      32
Ostrowski — Taussky inequality      59
Ostrowski, A.      1 30—32 52 59 62 64 78 86 88—90 95 166 182 184 186 188
Parabolic operator      150—153
Parker, W.W.      86 95
Parodi, M.      146 161
Parseval's equation      178
Parseval, M.A.      175 178
Partial differential equation      180 181
Partial differential equation of hyperbolic type      85
Partial differential inequality      146 163
Payne, L.E.      157 164
Pearson, E.      101 121 126
Peixoto, M.      132 145 160
Perron, O.      56 80 93 94 118 129 137 139 159
Petersson, H.      132 144 147 159
Petrov, V.N.      132 143 146 159
Phillips, R.S.      88 97
Picard, E.      100 112 114 116 127
Pick, G.      2 39 43 44 53 115 128
Picone, M.      130
Pitt, H.R.      166 186
Plancherel, M.      175
Plotter, M.H.      162
Pluecker, J.      92
Poincare, H.      75 91 132 144 158 165
Poisson, S.D.      90
Polar function      28 29
Pollak, H.      178 187
Polygonal inequality      183
Polynomial, hyperbolic      36—38 85 90
Positive definite function      100 114 115
Positive definite matrix      3 55—64 87
Positive definite matrix as sum of squares      58 59
Positive definite matrix, principal minors of      57—59
Positive definite quadratic form      55 112
Positive definite sequence      113 114
Positive function      99
Positive indefinite matrix      57
Positive matrix      56 80
Positive operator      56 93 131 140 147—157
Positive real function      86
Positive transformation      56
Positivity, domain of      56 87 88
Potential equation      153
Price, G.B.      90
Pringsheim, A.      51
Probability theory      55
Prodi, G.      133 154 162
Programming, dynamic      85
Projection technique      98 123 124
Pucci, C.      133 154 162 186
Quadratic form      3
Quadratic form, canonical representation      68 69
Quadratic form, Hermitian      57
Quadratic form, indefinite      38 39
Quadratic form, positive definite      57
Quasi linearization      23—33 52 139 155 156
Quasi linearization of convex and concave functions      29 30
Rado, T.      146 160
Raikov, D.      100 114
Rational betting      120
Rational polynomial      111—112
Rayleigh quotient      71 72
Rayleigh, J.W.S.      71
Reade, M.      146 160
Redheffer, R.      133 157 163 164
Reid, W.T.      132 145 160 165 166 180 186
Relativity theory      38 39
Representation theorem      55
Representation theorem for arithmetic-mean - geometric-mean inequality      9
Representation theorem for Cauchy's inequality      3
Representation theorem for integrals      61
Representation theorem for matrices      58—61 63 66 67 70
Representation theorem for matrices hermitian      65
Representation theorem for positive definite functions      100
Representation theorem for quadratic forms      58 59
Representation theorem for quadratic forms, canonical      68 69
Representation theorem in quasi linearization      23—32
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте