Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bertotti G. — Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
Bertotti G. — Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers

Àâòîð: Bertotti G.

Àííîòàöèÿ:

The book provides a comprehensive treatment of the physics of hysteresis in magnetish, and of the mathematical tools used to describe it. The relations of hysteresis to Maxwell's equations, equilibrium and non equilibrium thermodynamics, non-linear system dynamics, micromagnetics and domain theory are discussed from a unified viewpoint. These aspects are then applied to the interpretation of magnetization reversal mechanisms: coherent rotation and switching in magnetic particles, stochastic domain wall motion and the Barkhausen effect, coercivity mechanisms and magnetic viscosity, rate-dependent hysteresis and eddy-current losses. Emphasis is given to the connection between basic physical ideas and phenomenological models of interest to applications, and, in particular, to the conceptual path going from Maxwell's equations abnd thermodynamics to micro-magnetics and to Preisach hysteresis modeling.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1 edition

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 558

Äîáàâëåíà â êàòàëîã: 12.04.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Accommodation      463
Activation volume in magnetic viscosity      340 382 344(b)
Activation volume in magnetic viscosity and structural disorder      340
Activation volume in magnetic viscosity for bistable system      339—340 339(f)
Activation volume in magnetic viscosity for coherent rotation      340—341
Aftereffect, magnetic, diffusion-type      330
Aftereffect, magnetic, qualitative description      329
Aftereffect, magnetic, thermal-fluctuation-type      see “Magnetic viscosity”
Aging, magnetic      330
Alnico alloy      10
Amorphous alloy      10 320 330 347 371 386 22(f)
Amorphous alloy, wire      14 14(f)
Ampere’s Law      75 77 83
Amperian current      see “Magnetization current”
Angular momentum, orbital      79
Angular momentum, spin      84
Anhysteretic curve      18 482—483 18(f)
Anhysteretic curve of Preisach system      484
Anhysteretic state      18 18(f)
Anhysteretic state of Preisach system      see “Preisach system”
Anhysteretic state, thermal versus ac demagnetization      19
Anisotropy axis      146—147
Anisotropy axis, symmetry, cubic      150 156
Anisotropy axis, symmetry, uniaxial      147 154
Anisotropy constant of higher order      162(b)
Anisotropy constant of higher order and anisotropy field      153—154
Anisotropy constant of higher order and crystal symmetry      154—155
Anisotropy constant of higher order and first-order magnetization process      245—247 246(f)
Anisotropy constant of higher order and magnetization curve      306
Anisotropy constant of higher order, symmetry, cubic      155—156
Anisotropy constant of higher order, symmetry, uniaxial      150—153 154(f)
Anisotropy constant, symmetry, cubic      150
Anisotropy constant, symmetry, uniaxial      147
Anisotropy constant, typical values      517(t)
Anisotropy energy in micromagnetics      165 172—173
Anisotropy energy, geometrical representation      145—146 145(f)
Anisotropy energy, geometrical representation and higher-order terms      155(f)
Anisotropy energy, geometrical representation, symmetry, cubic      151(f) 152(f)
Anisotropy energy, geometrical representation, symmetry, uniaxial      147(f) 148(f)
Anisotropy field and coercivity      348 352
Anisotropy field and higher-order constants      153—154
Anisotropy field, symmetry, cubic      150
Anisotropy field, symmetry, uniaxial      149
Anisotropy field, typical values      517(t)
Anisotropy, magnetic      129 144 162(b)
Anisotropy, magnetic, biaxial      235
Anisotropy, magnetic, cubic      149—150 155—156 299 151(f) 152(f)
Anisotropy, magnetic, easy-axis type      147 154(f)
Anisotropy, magnetic, easy-cone type      153 154(f)
Anisotropy, magnetic, easy-cone type in first-order magnetization process      246
Anisotropy, magnetic, easy-plane type      149 154(f)
Anisotropy, magnetic, effective reduction due to exchange coupling      384—386 389(b)
Anisotropy, magnetic, mechanisms giving rise to      156 297 320 386 389(b)
Anisotropy, magnetic, uniaxial      146—149 150—156 147(f) 148(f) 155(f)
Antiferromagnetism      113 138
Applied field in estimate of coercive field      380 381
Applied field in estimate of magnetic work      110
Applied field in hysteresis loop interpretation      13—14
Applied field in magnctostatics      94 96 97 101 108
Applied field in magnetization process      7 21 193
Applied field in micromagnetics      166
Applied field in paramagnetism      5—6 131
Approach to equilibrium of bistable system      68—69
Approach to equilibrium of Preisach system      498—499
Approach to equilibrium of Preisach unit      494
Approach to equilibrium of thermodynamic system      55 63
Approach to equilibrium, qualitative description      27 43
Approach to saturation      316—317
Arrhenius formula      68
Arrott plot      140
Astroid in coherent rotation      228—232 229(f) 253(b)
Astroid in coherent rotation, geometrical interpretation      230—231 231(f)
Astroid in coherent rotation, parametric representation      229—230
Astroid in coherent rotation, qualitative description      228—229
Astroid in coherent rotation, tangent construction      231—232 231(f)
Autocorrelation      519—520 521
Autocorrelation of domain wall velocity      280
Autocovariance      520
Barbier plot      382 388(b)
Barkhausen effect      295(b)
Barkhausen effect and internal degrees of freedom      286—288
Barkhausen effect and magnetization process      285
Barkhausen effect, amplitude distribution      288 289(f)
Barkhausen effect, example      22(f)
Barkhausen effect, general properties      281—286
Barkhausen effect, measurement method      281—283 285 288
Barkhausen effect, nonstationarity along hysteresis loop      284—285 286(f)
Barkhausen effect, power spectrum      289—294 291(f)
Barkhausen effect, power spectrum, theoretical prediction      292—294
Barkhausen effect, qualitative description      21—23 256—257 283(f)
Barkhausen effect, reproducibility over subsequent cycles      283—284
Barkhausen effect, self-similar properties      288—289 290(f)
Barkhausen effect, stochastic versus average component      282
Barkhausen jump and loss separation      263—265 395—399
Barkhausen jump and micromagnetics      328
Barkhausen jump as macroscopic instability      14 321 481 483(f)
Barkhausen jump in Barkhausen effect      21 283 289
Barkhausen jump in bistable system      46 433 45(f) 47(f)
Barkhausen jump in coherent rotation      153 237—238 240—241 237(f) 238(f) 239(f) 240(f)
Barkhausen jump in coherent rotation, negative jump      245
Barkhausen jump in rate-independent hysteresis      43 48
Barkhausen jump in self-similar process, definition      278 279(f)
Barkhausen jump, energy loss      396—397
Barkhausen jump, energy loss in bistable system      46—48
Barkhausen jump, power-law distribution      278—280 294—295(b)
Barkhausen jump, typical duration, estimate      396—397
Barkhausen noise      see “Barkhausen effect”
Bessel function      276 354—355
Bifurcation set in catastrophe theory      51—52 51(f)
Bifurcation set in catastrophe theory for coherent rotation, biaxial anisotropy      235—236
Bifurcation set in catastrophe theory for coherent rotation, qualitative description      228—229
Bifurcation set in catastrophe theory for coherent rotation, uniaxial anisotropy      229—230
Bifurcation set in catastrophe theory for Preisach system      438 437(f)
Biot — Savart law      76
Bistable system, hysteresis properties, rate-dependent      57—60
Bistable system, hysteresis properties, rate-independent      44—48
Bistable system, thermal relaxation      63—65 66—69 64(f)
Bistable unit as source of Barkhausen jump      433
Bistable unit in magnetic viscosity      333—334
Bistable unit in Preisach system      see “Preisach unit”
Bitter-powder technique      192
Bloch line      203—204
Bloch wall      198 202
Bloch wall, asymmetric      202—203
Blocking temperature      376
Bohr magneton      84 134
Bowing of domain wall due to eddy currents      418—420 419(f) 430(b)
Bowing of domain wall due to pinning      288 309—310 362 367 359(f) 388(b)
Bowing of domain wall due to pinning, one-dimensional      367 369—370(f)
Bowing of domain wall due to pinning, two-dimensional      369
Bowing of domain wall, interplay of pinning and eddy currents      420
Brillouin function in paramagnetism      134
Brownian motion      273 315 525—526 527—528
Brown’s equations      179—180 387(b)
Brown’s equations, application to domain nucleation      378
Brown’s equations, application to ellipsoidal particle      350—353
Brown’s equations, application to magnetic phases in equilibrium      300—301 304
Brown’s equations, boundary condition      180
Brown’s equations, dimensionless form      350
Brown’s equations, effective field      179 301
Brown’s equations, linearized form      352—353
Brown’s equations, numerical implementation      187(b)
Brown’s paradox      378
Brown’s theorem      352
Bubble domain      215 217 319 216(f) 217(f)
Buckling mode in micromagnetics      355
Cantor dust      294(b)
Catastrophe function      50
Catastrophe theory      48—50 69(b)
Catastrophe theory, evolution rules      52—54
Chapman — Kolmogorov equation      521
Characteristic in partial differential equation      207
Classical field      401 424 402(f) 423(f)
Classical loss      429(b)
Classical loss, dependence on magnetization law      402—403
Classical loss, dependence on magnetization law, linear law      404—407
Classical loss, dependence on magnetization law, linear law, analytic loss expression      405—406
Classical loss, dependence on magnetization law, linear law, frequency dependence      406 407(f)
Classical loss, dependence on magnetization law, linear law, induction profile      406—407 408(f)
Classical loss, dependence on magnetization law, linear law, loop shape      405 406(f)
Classical loss, dependence on magnetization law, steplike law      407—411 409(f)
Classical loss, dependence on magnetization law, steplike law, analytic loss expression      411
Classical loss, dependence on magnetization law, steplike law, eddy-current density      410
Classical loss, dependence on magnetization law, steplike law, frequency dependence      411
Classical loss, dependence on magnetization law, steplike law, loop shape      410 410(f)
Classical loss, dependence on magnetization law, steplike law, qualitative description      407—409
Classical loss, low-frequency limit      399—403
Classical loss, low-frequency limit, average loss      400
Classical loss, low-frequency limit, eddy-current density      400
Classical loss, low-frequency limit, frequency dependence      398
Classical loss, low-frequency limit, independence of magnetization law      401
Classical loss, low-frequency limit, instantaneous loss      400 401
Classical loss, low-frequency limit, limit of applicability      402
Classical loss, low-frequency limit, sinusoidal versus triangular induction      400—401
Classical loss, Maxwell’s equations for      400 404
Classical loss, qualitative description      26—27 392 399
Classical loss, statistical interpretation      398
Closure domain      212 213 212(f)
Coarse graining      m free energy calculation 169
Cobalt      517(t)
Coercive field and energy balance      381 382 383 383(f)
Coercive field and magnetic viscosity      382 388(b)
Coercive field and reversal modes, in ellipsoidal particle      356
Coercive field as function of field angle      378—379
Coercive field as function of grain size      383—384 386 387(f)
Coercive field as function of particle size      375—378 375(f)
Coercive field as function of particle size, and domain processes      377—378
Coercive field as function of particle size, and reversal modes      377
Coercive field as function of particle size, near superparamagnetic transition      377
Coercive field in domain wall pinning, definition      362 366
Coercive field in domain wall pinning, dependence on wall extension      366 368 370 372
Coercive field in domain wall pinning, estimate      365—366 367—371 372 373—374
Coercive field in domain wall pinning, power-law form      363
Coercive field in particle assembly      248
Coercive field of bistable system      46
Coercive field, qualitative description      10 347—348 374 349(f)
Coercivity      see “Coercive field”
Coherent rotation as reversal mode in micromagnetics      349 353—354 354(f)
Coherent rotation as reversal mode in micromagnetics, critical field      354 356(f)
Coherent rotation under alternating field      237(f)
Coherent rotation under alternating field, free energy      239—240 239(f)
Coherent rotation under alternating field, hysteresis loop      241—242 240(f) 241(f)
Coherent rotation under alternating field, instability point      242 243(f)
Coherent rotation under alternating field, qualitative description      237
Coherent rotation under alternating field, remanence      242
Coherent rotation under alternating field, susceptibility      242
Coherent rotation under rotational field      238 238(f)
Coherent rotation, approach to saturation      316—317
Coherent rotation, biaxial anisotropy      235 236(f)
Coherent rotation, energy barrier, field dependence      233
Coherent rotation, energy loss      242—245 243(f)
Coherent rotation, energy loss as free energy decrease      244
Coherent rotation, energy loss as hysteresis loop area      245
Coherent rotation, equipotential curve      232—233 234(f)
Coherent rotation, free energy      228
Coherent rotation, qualitative description      225—226
Coherent rotation, stability analysis      229 230—232 235
Confluent hypergeometric function      275
Congruency property as consistency rule for hysteresis      466
Congruency property in domain wall dynamics      465—466 470—471
Congruency property in magnetic material      463—464
Congruency property in Preisach system      434 460 465 460(f) 461(f) 475—476(b)
Conservation of electric charge      75
Constitutive law of magnetic medium      14—15 16 84 111—113 129 111(f)
Constitutive law of magnetic medium and free energy      119
Constitutive law of magnetic medium and magnetic work      94 111
Constitutive law of magnetic medium, dependence on field history in Preisach system      443—444 448
Constitutive law of magnetic medium, dependence on field rate due to eddy currents      397
Constitutive law of magnetic medium, dependence on field rate due to thermal relaxation      504—505 505(b)
Constitutive law of magnetic medium, dependence on spatial resolution      100 123 392 397 450
Constitutive law of magnetic medium, multivalued, in ferromagnet      112—113
Constitutive law of magnetic medium, steplike      114—115 115(f)
Control parameter in catastrophe theory      48
Core loss      see “Power loss”
Correlation region in magnetization process      256 263 266 287 421—423
Correlation region in magnetization process, number of active regions      423—424 427
Correlation region in magnetization process, number of active regions, dependence on excess field      424—425 427
Coulomb gauge in magnetostatics      78
Critical point in catastrophe theory      49
Cross-tie wall      203 204(f)
Crystal field in anisotropy      157
Curie law in paramagnetism      133
Curie point      see “Curie temperature”
Curie temperature      6 135
Curie temperature, experimental determination      139
Curie temperature, typical values      5l7(t)
Curie — Weiss law      135
Curling mode in micromagnetics      349 354—355 354(f)
Curling mode in micromagnetics, critical field      355 356(f)
Current density, microscopic, in magnetized matter      81—82
Current density, stationary, in magnetostatics      76
Current density, stationary, in magnetostatics, energy relations      92—93
Cusp catastrophe      51—52 51(f)
Cusp catastrophe at Curie point      139 140(f)
Cusp catastrophe at Curie point and Arrott plot      139—140
Cusp catastrophe in bistable system      52
Cusp catastrophe in coherent rotation      230 251—252
Cusp catastrophe in hysteresis loop      482
Delay convention in catastrophe theory      52
Delay convention in catastrophe theory and rate-independent hysteresis      53 61
Demagnetized state      18 307 499
Demagnetized state of particle assembly      249
Demagnetized state of Preisach system      441 454 488 442(f)
Demagnetized state of single crystal      302
Demagnetizing factor      88—89 13
Demagnetizing factor of ellipsoid      102(b)
Demagnetizing factor of spheroid      89
Demagnetizing field      88—90 13
Demagnetizing field, absence for particular geometry      90
Demagnetizing field, influence on magnetic viscosity      341
Demagnetizing field, scale invariance      90
Diamagnetism      112
Diffusion aftereffect      see “Aftereffect”
dipolar field      79—81 98 80(f)
Dipolar field, singularity      80—81
Dislocation as pinning source      371—372
Dispersion field as pinning source      372—374 388(b)
Domain      see “Domain structure” “Magnetic
Domain in phase mixture      53—54
Domain structure      220(b)
Domain structure and excess loss      412 416 420—422
Domain structure and magnetoelastic effects      213
Domain structure and structural disorder      218—220
Domain structure as local energy minimum      21 205
Domain structure as mechanism of energy reduction      195 212—215
Domain structure as phase equilibrium      298 299—300
Domain structure as solution of micromagnetic equations      193
Domain structure in ideal soft material in two dimensions      196
Domain structure in picture-frame single crystal      211 257
Domain structure, cubic anisotropy      212—213
Domain structure, example      8(f) 28(f) 195(f) 209(f) 211(f) 217(f) 219(f)
Domain structure, uniaxial anisotropy      213—217 214(f)
Domain structure, uniaxial anisotropy and anisotropy energy      213
Domain structure, uniaxial anisotropy and magnetostatic energy      213—217
Domain theory      192—196
Domain theory and micromagnetics      190
Domain theory, energy aspects      194—195
Domain theory, limit of applicability      195—196
Domain theory, principle of pole avoidance      194—195 204—205
Domain theory, principle of pole avoidance in two-dimensions      205—206
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå