Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bertotti G. — Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
Àâòîð: Bertotti G.
Àííîòàöèÿ: The book provides a comprehensive treatment of the physics of hysteresis in magnetish, and of the mathematical tools used to describe it. The relations of hysteresis to Maxwell's equations, equilibrium and non equilibrium thermodynamics, non-linear system dynamics, micromagnetics and domain theory are discussed from a unified viewpoint. These aspects are then applied to the interpretation of magnetization reversal mechanisms: coherent rotation and switching in magnetic particles, stochastic domain wall motion and the Barkhausen effect, coercivity mechanisms and magnetic viscosity, rate-dependent hysteresis and eddy-current losses. Emphasis is given to the connection between basic physical ideas and phenomenological models of interest to applications, and, in particular, to the conceptual path going from Maxwell's equations abnd thermodynamics to micro-magnetics and to Preisach hysteresis modeling.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 1 edition
Ãîä èçäàíèÿ: 1998
Êîëè÷åñòâî ñòðàíèö: 558
Äîáàâëåíà â êàòàëîã: 12.04.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Accommodation 463
Activation volume in magnetic viscosity 340 382 344(b)
Activation volume in magnetic viscosity and structural disorder 340
Activation volume in magnetic viscosity for bistable system 339—340 339(f)
Activation volume in magnetic viscosity for coherent rotation 340—341
Aftereffect, magnetic, diffusion-type 330
Aftereffect, magnetic, qualitative description 329
Aftereffect, magnetic, thermal-fluctuation-type see “Magnetic viscosity”
Aging, magnetic 330
Alnico alloy 10
Amorphous alloy 10 320 330 347 371 386 22(f)
Amorphous alloy, wire 14 14(f)
Ampere’s Law 75 77 83
Amperian current see “Magnetization current”
Angular momentum, orbital 79
Angular momentum, spin 84
Anhysteretic curve 18 482—483 18(f)
Anhysteretic curve of Preisach system 484
Anhysteretic state 18 18(f)
Anhysteretic state of Preisach system see “Preisach system”
Anhysteretic state, thermal versus ac demagnetization 19
Anisotropy axis 146—147
Anisotropy axis, symmetry, cubic 150 156
Anisotropy axis, symmetry, uniaxial 147 154
Anisotropy constant of higher order 162(b)
Anisotropy constant of higher order and anisotropy field 153—154
Anisotropy constant of higher order and crystal symmetry 154—155
Anisotropy constant of higher order and first-order magnetization process 245—247 246(f)
Anisotropy constant of higher order and magnetization curve 306
Anisotropy constant of higher order, symmetry, cubic 155—156
Anisotropy constant of higher order, symmetry, uniaxial 150—153 154(f)
Anisotropy constant, symmetry, cubic 150
Anisotropy constant, symmetry, uniaxial 147
Anisotropy constant, typical values 517(t)
Anisotropy energy in micromagnetics 165 172—173
Anisotropy energy, geometrical representation 145—146 145(f)
Anisotropy energy, geometrical representation and higher-order terms 155(f)
Anisotropy energy, geometrical representation, symmetry, cubic 151(f) 152(f)
Anisotropy energy, geometrical representation, symmetry, uniaxial 147(f) 148(f)
Anisotropy field and coercivity 348 352
Anisotropy field and higher-order constants 153—154
Anisotropy field, symmetry, cubic 150
Anisotropy field, symmetry, uniaxial 149
Anisotropy field, typical values 517(t)
Anisotropy, magnetic 129 144 162(b)
Anisotropy, magnetic, biaxial 235
Anisotropy, magnetic, cubic 149—150 155—156 299 151(f) 152(f)
Anisotropy, magnetic, easy-axis type 147 154(f)
Anisotropy, magnetic, easy-cone type 153 154(f)
Anisotropy, magnetic, easy-cone type in first-order magnetization process 246
Anisotropy, magnetic, easy-plane type 149 154(f)
Anisotropy, magnetic, effective reduction due to exchange coupling 384—386 389(b)
Anisotropy, magnetic, mechanisms giving rise to 156 297 320 386 389(b)
Anisotropy, magnetic, uniaxial 146—149 150—156 147(f) 148(f) 155(f)
Antiferromagnetism 113 138
Applied field in estimate of coercive field 380 381
Applied field in estimate of magnetic work 110
Applied field in hysteresis loop interpretation 13—14
Applied field in magnctostatics 94 96 97 101 108
Applied field in magnetization process 7 21 193
Applied field in micromagnetics 166
Applied field in paramagnetism 5—6 131
Approach to equilibrium of bistable system 68—69
Approach to equilibrium of Preisach system 498—499
Approach to equilibrium of Preisach unit 494
Approach to equilibrium of thermodynamic system 55 63
Approach to equilibrium, qualitative description 27 43
Approach to saturation 316—317
Arrhenius formula 68
Arrott plot 140
Astroid in coherent rotation 228—232 229(f) 253(b)
Astroid in coherent rotation, geometrical interpretation 230—231 231(f)
Astroid in coherent rotation, parametric representation 229—230
Astroid in coherent rotation, qualitative description 228—229
Astroid in coherent rotation, tangent construction 231—232 231(f)
Autocorrelation 519—520 521
Autocorrelation of domain wall velocity 280
Autocovariance 520
Barbier plot 382 388(b)
Barkhausen effect 295(b)
Barkhausen effect and internal degrees of freedom 286—288
Barkhausen effect and magnetization process 285
Barkhausen effect, amplitude distribution 288 289(f)
Barkhausen effect, example 22(f)
Barkhausen effect, general properties 281—286
Barkhausen effect, measurement method 281—283 285 288
Barkhausen effect, nonstationarity along hysteresis loop 284—285 286(f)
Barkhausen effect, power spectrum 289—294 291(f)
Barkhausen effect, power spectrum, theoretical prediction 292—294
Barkhausen effect, qualitative description 21—23 256—257 283(f)
Barkhausen effect, reproducibility over subsequent cycles 283—284
Barkhausen effect, self-similar properties 288—289 290(f)
Barkhausen effect, stochastic versus average component 282
Barkhausen jump and loss separation 263—265 395—399
Barkhausen jump and micromagnetics 328
Barkhausen jump as macroscopic instability 14 321 481 483(f)
Barkhausen jump in Barkhausen effect 21 283 289
Barkhausen jump in bistable system 46 433 45(f) 47(f)
Barkhausen jump in coherent rotation 153 237—238 240—241 237(f) 238(f) 239(f) 240(f)
Barkhausen jump in coherent rotation, negative jump 245
Barkhausen jump in rate-independent hysteresis 43 48
Barkhausen jump in self-similar process, definition 278 279(f)
Barkhausen jump, energy loss 396—397
Barkhausen jump, energy loss in bistable system 46—48
Barkhausen jump, power-law distribution 278—280 294—295(b)
Barkhausen jump, typical duration, estimate 396—397
Barkhausen noise see “Barkhausen effect”
Bessel function 276 354—355
Bifurcation set in catastrophe theory 51—52 51(f)
Bifurcation set in catastrophe theory for coherent rotation, biaxial anisotropy 235—236
Bifurcation set in catastrophe theory for coherent rotation, qualitative description 228—229
Bifurcation set in catastrophe theory for coherent rotation, uniaxial anisotropy 229—230
Bifurcation set in catastrophe theory for Preisach system 438 437(f)
Biot — Savart law 76
Bistable system, hysteresis properties, rate-dependent 57—60
Bistable system, hysteresis properties, rate-independent 44—48
Bistable system, thermal relaxation 63—65 66—69 64(f)
Bistable unit as source of Barkhausen jump 433
Bistable unit in magnetic viscosity 333—334
Bistable unit in Preisach system see “Preisach unit”
Bitter-powder technique 192
Bloch line 203—204
Bloch wall 198 202
Bloch wall, asymmetric 202—203
Blocking temperature 376
Bohr magneton 84 134
Bowing of domain wall due to eddy currents 418—420 419(f) 430(b)
Bowing of domain wall due to pinning 288 309—310 362 367 359(f) 388(b)
Bowing of domain wall due to pinning, one-dimensional 367 369—370(f)
Bowing of domain wall due to pinning, two-dimensional 369
Bowing of domain wall, interplay of pinning and eddy currents 420
Brillouin function in paramagnetism 134
Brownian motion 273 315 525—526 527—528
Brown’s equations 179—180 387(b)
Brown’s equations, application to domain nucleation 378
Brown’s equations, application to ellipsoidal particle 350—353
Brown’s equations, application to magnetic phases in equilibrium 300—301 304
Brown’s equations, boundary condition 180
Brown’s equations, dimensionless form 350
Brown’s equations, effective field 179 301
Brown’s equations, linearized form 352—353
Brown’s equations, numerical implementation 187(b)
Brown’s paradox 378
Brown’s theorem 352
Bubble domain 215 217 319 216(f) 217(f)
Buckling mode in micromagnetics 355
Cantor dust 294(b)
Catastrophe function 50
Catastrophe theory 48—50 69(b)
Catastrophe theory, evolution rules 52—54
Chapman — Kolmogorov equation 521
Characteristic in partial differential equation 207
Classical field 401 424 402(f) 423(f)
Classical loss 429(b)
Classical loss, dependence on magnetization law 402—403
Classical loss, dependence on magnetization law, linear law 404—407
Classical loss, dependence on magnetization law, linear law, analytic loss expression 405—406
Classical loss, dependence on magnetization law, linear law, frequency dependence 406 407(f)
Classical loss, dependence on magnetization law, linear law, induction profile 406—407 408(f)
Classical loss, dependence on magnetization law, linear law, loop shape 405 406(f)
Classical loss, dependence on magnetization law, steplike law 407—411 409(f)
Classical loss, dependence on magnetization law, steplike law, analytic loss expression 411
Classical loss, dependence on magnetization law, steplike law, eddy-current density 410
Classical loss, dependence on magnetization law, steplike law, frequency dependence 411
Classical loss, dependence on magnetization law, steplike law, loop shape 410 410(f)
Classical loss, dependence on magnetization law, steplike law, qualitative description 407—409
Classical loss, low-frequency limit 399—403
Classical loss, low-frequency limit, average loss 400
Classical loss, low-frequency limit, eddy-current density 400
Classical loss, low-frequency limit, frequency dependence 398
Classical loss, low-frequency limit, independence of magnetization law 401
Classical loss, low-frequency limit, instantaneous loss 400 401
Classical loss, low-frequency limit, limit of applicability 402
Classical loss, low-frequency limit, sinusoidal versus triangular induction 400—401
Classical loss, Maxwell’s equations for 400 404
Classical loss, qualitative description 26—27 392 399
Classical loss, statistical interpretation 398
Closure domain 212 213 212(f)
Coarse graining m free energy calculation 169
Cobalt 517(t)
Coercive field and energy balance 381 382 383 383(f)
Coercive field and magnetic viscosity 382 388(b)
Coercive field and reversal modes, in ellipsoidal particle 356
Coercive field as function of field angle 378—379
Coercive field as function of grain size 383—384 386 387(f)
Coercive field as function of particle size 375—378 375(f)
Coercive field as function of particle size, and domain processes 377—378
Coercive field as function of particle size, and reversal modes 377
Coercive field as function of particle size, near superparamagnetic transition 377
Coercive field in domain wall pinning, definition 362 366
Coercive field in domain wall pinning, dependence on wall extension 366 368 370 372
Coercive field in domain wall pinning, estimate 365—366 367—371 372 373—374
Coercive field in domain wall pinning, power-law form 363
Coercive field in particle assembly 248
Coercive field of bistable system 46
Coercive field, qualitative description 10 347—348 374 349(f)
Coercivity see “Coercive field”
Coherent rotation as reversal mode in micromagnetics 349 353—354 354(f)
Coherent rotation as reversal mode in micromagnetics, critical field 354 356(f)
Coherent rotation under alternating field 237(f)
Coherent rotation under alternating field, free energy 239—240 239(f)
Coherent rotation under alternating field, hysteresis loop 241—242 240(f) 241(f)
Coherent rotation under alternating field, instability point 242 243(f)
Coherent rotation under alternating field, qualitative description 237
Coherent rotation under alternating field, remanence 242
Coherent rotation under alternating field, susceptibility 242
Coherent rotation under rotational field 238 238(f)
Coherent rotation, approach to saturation 316—317
Coherent rotation, biaxial anisotropy 235 236(f)
Coherent rotation, energy barrier, field dependence 233
Coherent rotation, energy loss 242—245 243(f)
Coherent rotation, energy loss as free energy decrease 244
Coherent rotation, energy loss as hysteresis loop area 245
Coherent rotation, equipotential curve 232—233 234(f)
Coherent rotation, free energy 228
Coherent rotation, qualitative description 225—226
Coherent rotation, stability analysis 229 230—232 235
Confluent hypergeometric function 275
Congruency property as consistency rule for hysteresis 466
Congruency property in domain wall dynamics 465—466 470—471
Congruency property in magnetic material 463—464
Congruency property in Preisach system 434 460 465 460(f) 461(f) 475—476(b)
Conservation of electric charge 75
Constitutive law of magnetic medium 14—15 16 84 111—113 129 111(f)
Constitutive law of magnetic medium and free energy 119
Constitutive law of magnetic medium and magnetic work 94 111
Constitutive law of magnetic medium, dependence on field history in Preisach system 443—444 448
Constitutive law of magnetic medium, dependence on field rate due to eddy currents 397
Constitutive law of magnetic medium, dependence on field rate due to thermal relaxation 504—505 505(b)
Constitutive law of magnetic medium, dependence on spatial resolution 100 123 392 397 450
Constitutive law of magnetic medium, multivalued, in ferromagnet 112—113
Constitutive law of magnetic medium, steplike 114—115 115(f)
Control parameter in catastrophe theory 48
Core loss see “Power loss”
Correlation region in magnetization process 256 263 266 287 421—423
Correlation region in magnetization process, number of active regions 423—424 427
Correlation region in magnetization process, number of active regions, dependence on excess field 424—425 427
Coulomb gauge in magnetostatics 78
Critical point in catastrophe theory 49
Cross-tie wall 203 204(f)
Crystal field in anisotropy 157
Curie law in paramagnetism 133
Curie point see “Curie temperature”
Curie temperature 6 135
Curie temperature, experimental determination 139
Curie temperature, typical values 5l7(t)
Curie — Weiss law 135
Curling mode in micromagnetics 349 354—355 354(f)
Curling mode in micromagnetics, critical field 355 356(f)
Current density, microscopic, in magnetized matter 81—82
Current density, stationary, in magnetostatics 76
Current density, stationary, in magnetostatics, energy relations 92—93
Cusp catastrophe 51—52 51(f)
Cusp catastrophe at Curie point 139 140(f)
Cusp catastrophe at Curie point and Arrott plot 139—140
Cusp catastrophe in bistable system 52
Cusp catastrophe in coherent rotation 230 251—252
Cusp catastrophe in hysteresis loop 482
Delay convention in catastrophe theory 52
Delay convention in catastrophe theory and rate-independent hysteresis 53 61
Demagnetized state 18 307 499
Demagnetized state of particle assembly 249
Demagnetized state of Preisach system 441 454 488 442(f)
Demagnetized state of single crystal 302
Demagnetizing factor 88—89 13
Demagnetizing factor of ellipsoid 102(b)
Demagnetizing factor of spheroid 89
Demagnetizing field 88—90 13
Demagnetizing field, absence for particular geometry 90
Demagnetizing field, influence on magnetic viscosity 341
Demagnetizing field, scale invariance 90
Diamagnetism 112
Diffusion aftereffect see “Aftereffect”
dipolar field 79—81 98 80(f)
Dipolar field, singularity 80—81
Dislocation as pinning source 371—372
Dispersion field as pinning source 372—374 388(b)
Domain see “Domain structure” “Magnetic
Domain in phase mixture 53—54
Domain structure 220(b)
Domain structure and excess loss 412 416 420—422
Domain structure and magnetoelastic effects 213
Domain structure and structural disorder 218—220
Domain structure as local energy minimum 21 205
Domain structure as mechanism of energy reduction 195 212—215
Domain structure as phase equilibrium 298 299—300
Domain structure as solution of micromagnetic equations 193
Domain structure in ideal soft material in two dimensions 196
Domain structure in picture-frame single crystal 211 257
Domain structure, cubic anisotropy 212—213
Domain structure, example 8(f) 28(f) 195(f) 209(f) 211(f) 217(f) 219(f)
Domain structure, uniaxial anisotropy 213—217 214(f)
Domain structure, uniaxial anisotropy and anisotropy energy 213
Domain structure, uniaxial anisotropy and magnetostatic energy 213—217
Domain theory 192—196
Domain theory and micromagnetics 190
Domain theory, energy aspects 194—195
Domain theory, limit of applicability 195—196
Domain theory, principle of pole avoidance 194—195 204—205
Domain theory, principle of pole avoidance in two-dimensions 205—206
Ðåêëàìà