Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bhaya A., Kaszkurewicz E. — Control Perspectives on Numerical Algorithms and Matrix Problems
Bhaya A., Kaszkurewicz E. — Control Perspectives on Numerical Algorithms and Matrix Problems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Control Perspectives on Numerical Algorithms and Matrix Problems

Авторы: Bhaya A., Kaszkurewicz E.

Аннотация:

This book organizes the analysis and design of iterative numerical methods from a control perspective. A variety of applications are discussed, including iterative methods for linear and nonlinear systems of equations, neural networks for linear and quadratic programming problems and integration and shooting methods for ordinary differential equations.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1 edition

Год издания: 2006

Количество страниц: 272

Добавлена в каталог: 11.04.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lin, Z      231
Linear iterative methods taxonomy of      84
Linear matrix inequality      229
Linear programming problem in canonical form I      160
Linear programming problem in canonical form I, convergence conditions for      161
Linear programming problem in canonical form II, convergence conditions for      161
Linear programming problem in standard form convergence conditions for      164
Linear programming problem, GDS for      154 162
Linear programming problem, GDS for control perspective on      162
Linear quadratic (LQ)      199
Linear quadratic (LQ) problem      8
Linear quadratic (LQ) problem, structurally constrained      208
Linear system of equations, $L_{1}(LAD)$ solution of      141
Linear system of equations, 1-norm (LAD) solution of      141
Linear system of equations, GDS solution of      141
Linear system of equations, GDS solver      131
Linear system of equations, least absolute deviation (LAD) solution of      141
Linear system of equations, least norm solution of      141
Linear system of equations, least squares solution of      141
Linear system of equations, using a GDS for solution of      140
Linear system of equations, weighted least squares solution of      141
Linear system, iterative methods for      71
Linear system, KKT      173
Linear system, underdetermined      144
Lipschitz constant      21
Lipschitz continuous      21
Little, J. B      224 225
LOC (Liapunov optimizing control)      24 45
Locally Lipschitz      21
Logar, A      231
Loss function      140
Loss function, convex      140
Loss function, single-stage      119—121
LQ (linear quadratic)      199
LQ optimal control problem      8
LS-SVM (least squares support vector machine)      173
Luenberger, D. G.      xxiv 148 151
Lur’e system      66 68
Machine shop problem, solution via polynomial matrices      230
Majani, E.      174
Mangiavacchi, N.      197
Manocha, D.      219
Marcus, M.      219 223
Marinov, C. A.      174
Markov parameters      11 12
Martin, C. E      227
Martinez, J. M.      xxiv 91
Mathis, D      174
Matrix D-stability as feedback stability problem      210
Matrix D-stability for $2 \times 2$ matrices      216
Matrix D-stability for $3 \times 3$ matrices      217
Matrix D-stability sufficient condition in strictly positive real terms      214
Matrix D-stability, characterization for $3 \times 3$ matrices      217
Matrix D-stability, connection to strictly positive real functions      213
Matrix fraction      230
Matrix with rational function entries      230
Matrix, additively diagonally stable      136
Matrix, adjugate      11
Matrix, classical adjoint, definition      11
Matrix, controllability      12 74
Matrix, diagonally stable      17 23
Matrix, dual      12
Matrix, feedback gain      73
Matrix, feedforward      2
Matrix, Hankel      12 15
Matrix, Hurwitz      23
Matrix, Hurwitz diagonally stable      23 26
Matrix, Hurwitz stable      23
Matrix, input      2
Matrix, iteration      75
Matrix, Krylov      12
Matrix, Liapunov equation      229
Matrix, observability      12
Matrix, Schur      17
Matrix, Schur diagonally stable      17
Matrix, Schur stable      17 74
Matrix, system      2
Mattheij, R. M. M      197 224
Mayers, D. F.      xxiv
Mayne, D. Q.      118 123 125
McCarthy, C.      200 203
McMillan degree      12 230
McNamee, J.      99
Mehra, P.      132
Metatechnique      xxii
Method, backpropagation with momentum (BPM)      83
Method, conjugate gradient (CG)      85
Method, discrete Newton variable structure (DNV)      60 62
Method, feedback gain matrix for      74
Method, Frankel      85
Method, Gauss — Seidel      74 85
Method, Jacobi      74 85
Method, Jacobian matrix transpose (DJT)      61
Method, Jacobian matrix transpose variable structure (DJTV)      61
Method, Krylov subspace      71
Method, Krylov subspace motivation for      71
Method, Newton      117
Method, Newton type optimal control-based      94
Method, Newton-Raphson computational effort of      119
Method, orthodir      85
Method, Orthomin(2)      85
Method, Orthomin(l)      85
Method, preconditioned Richardson      85
Method, Richardson      77
Method, Richardson second-order      85
Method, scalar iterative      66
Method, scalar Newton      67
Method, scalar Newton disturbances acting on      66
Method, scalar Newton effect of disturbances on      66
Method, scalar secant      67
Method, scalar Steffensen      67
Method, spurt      107
Method, steepest descent      79 85 117
Method, successive overrelaxation (SOR)      74 85
Method, variable structure Jacobian matrix transpose (DVJT)      61
Meyer, C. D.      75
Mf (minimum fuel)      95
Minimal realization      12
Minimal realization from Kalman-Gilbert canonical form      15
Minimal residual method, CLF/LOC derivation of      75
Mishchenko, E.      10 39 95
MOCP (multistage optimal control problems)      118
Moliere, J.      24
Momentum factor for BPM      83
Momentum factor for BPM optimal, in terms of CG parameters      84
Momentum parameter for BPM, optimally tuned      83
Monaco, S.      90
Moore, J. B.      xxiii 105
Morari, M.      200 211
Morgan, A. P.      219 223 225
Mostowski, A.      219
Multiplier, Lagrange      8
Multistage optimal control problems (MOCP)      118
Murray, D. M.      118 124
Murray, R.      1
Nagao, T.      174
Naidu, D. S.      10
Nash, S. G.      xxiv 151
Nedtf, J.      50 90 91
Network weights      83
Neuberger, J. W.      33 39 50
Neural network      132
Neural network as associative memory GDS      134
Neural network as feedback control system      134
Neural network as global optimizer GDS      135
Neural network, discrete-time recurrent      137
Neural network, feedback (recurrent)      132
Neural network, feedforward      132
Neural network, Hopfield — Tank      133
Neural-gradient dynamical system      128
Neurodynamical optimization      128
Newton method      60
Newton method, disturbances in, Liapunov function approach to      68
Newton method, effect of disturbances on      69
Newton method, effect of roundoff error on      70
Newton method, generalized variable structure      51
Newton method, nonlinear partial      114
Newton method, optimally controlled      96
Newton method, “paradox” of one-step convergence      64
Newton transformation      125
Newton variable (NV)      47—49 53 57 97
Newton vector      125
Newton vector field      52
Newton vector field, extraneous singularities of      52—54
Newton — Raphson method      60
NLP (nonlinear programming problem)      118
Nocedal, J.      xxiv 84 151
Nonlinear programming problem (NLP)      118
Nonlinear programming problem (NLP) as multistage optimal control problems (MOCP)      119
Nonlinear programming problem (NLP) to MOCP, general transcription strategy      119
Nonlinearity, first-quadrant-third-quadrant      25 26
Nonlinearity, infinite sector      25 26
Nonlinearity, Normand — Cyrot, D.      90
Nonlinearity, sector      25 26
Ober, R. J.      229
Objective function, penalized      102
Observability matrix      207 221
Observability matrix, nullspace of      13
ODE (ordinary differential equation)      20
ODE (ordinary differential equation) as first-order ODE      87
ODE (ordinary differential equation) existence and uniqueness of solutions      21
ODE (ordinary differential equation) LOC/CLF approach to      87
ODE (ordinary differential equation), CG      85
ODE (ordinary differential equation), HBF      86
ODE (ordinary differential equation), HBF as regularization of Newton ODE      86
ODE (ordinary differential equation), HBF connection to algorithm DC      189
ODE (ordinary differential equation), HBF from CLF approach      89
ODE (ordinary differential equation), Newton      86
ODE (ordinary differential equation), Persidskii type      25
ODE (ordinary differential equation), shooting method for      191
ODE (ordinary differential equation), state space model of      192
ODE (ordinary differential equation), steepest descent      86
ODE integration as parameterized map      180
ODE integration method, asymptotic error estimate      181
ODE integration method, choice of cost function for      187
ODE integration method, constant error generation per time step      190
ODE integration method, global error measures      187
ODE integration method, local error control law      181
ODE integration method, local error model      180
ODE integration method, local error per step (EPS)      181
ODE integration method, local error per unit step (EPUS)      181
ODE integration method, optimal stepsize control constant coefficient ODE      190
ODE integration method, order of      181
ODE integration method, principal error function for      181
ODE integration method, reference method      180
ODE integration method, stepsize control as optimal control problem      187
ODE integration method, stepsize error relation      181
ODE integration method, theoretical results      189
ODE integration, adaptive time-stepping for      179
ODE integration, one step method for      180
Oliveira, R.C.L.F.      210
Ono, T.      197 198
Open loop      3
Optimal conditioning problem      204
Optimal control      9
Optimal control as motivation for variable structure control      94
Optimal control in feedback form      9
Optimal control in knot selection of cubic splines      228
Optimal control in least squares fitting of state space model      228
Optimal control in the theory of Bezier curves      227
Optimal control problem      95 118
Optimal control problem, fixed final state, boundary conditions for      10
Optimal control problem, fixed final time      8
Optimal control problem, free final state      8
Optimal control problem, free final time, boundary conditions for      10
Optimal control problem, linear quadratic (LQ)      8
Optimal control problem, LQ perspective on      208
Optimal control problem, multistage      119
Optimal control problem, singular solution of      111
Optimal control problem, stage of      119
Optimal control theory, elements of      8
Optimal control, steps to find      9
Optimal control, structurally constrained      208
Optimal diagonal preconditioners as decentralized controllers, difficulty of finding      210
Optimal diagonal preconditioning      202
Optimization method, continuous-time      116
Optimization problem, with linear constraints      150
Optimization, benchmark problems for      119
Optimization, CLF approach to      56
Optimization, neurodynamical      128
Optimization, relation to Liapunov function      127
Optimization, second-order dynamical system for classical mechanics analogy for      56
Ordinary differential equation (ODE) as first-order ODE      87
Ordinary differential equation (ODE) as regularization of Newton ODE      86
Ordinary differential equation (ODE) CG      85
Ordinary differential equation (ODE) connection to algorithm DC      1 89
Ordinary differential equation (ODE) existence and uniqueness of solutions      21
Ordinary differential equation (ODE) from CLF approach      89
Ordinary differential equation (ODE) HBF      86
Ordinary differential equation (ODE) LOC/CLF approach to      87
Ordinary differential equation (ODE), Newton      86
Ordinary differential equation (ODE), Persidskii type      25
Ordinary differential equation (ODE), shooting method for      191
Ordinary differential equation (ODE), state space model of      192
Ordinary differential equation (ODE), steepest descent      86
Oren, S. S.      120
Oren’s power function      120
Ortega, J. M      39 66 90 135
Orthomin(l) method, derivation by stabilizing state feedback      77
Output equation      42
Output feedback form      73
Ozan, T. M.      166
O’Shea, D      224 225
Paden, B.      31 39
Pair, {F, G}      3
Panskih, N. P.      107 124
Pantazis, R. D.      228
Parameters of      52
Parisi, V.      56 65 91
Parlett, B. N.      14
Pazos, F. A.      xxiv 61
PD (proportional-derivative)      77
Penalty function      147 148
Penalty function parameter, as control gain      149
Peres, P. L. D.      210
Perfect      200
Perfect diagonal conditionability, characterization of      201
Perfect diagonal preconditioning      203 205
Perfect diagonal preconditioning, connection to decentralized feedback      205
Performance index      97
Performance index, minimum fuel (mf)      95
Performance index, minimum time      96
Performance index, quadratic      8
Persidskii, S. K.      25
Persidskii-type system      51
Phansalkar, V. V.      83 91
Phase, convergence      152
Phase, reaching      152
PI (proportional-integral)      7 184
Pickel, P. F      231
PID (proportional-integral-derivative)      6 184
Pinder, G.      224
Pittner, S.      91
Placement, eigenvalue      3
Plant      xx 41 43 58 198
PMP (Pontryagin minimum principle)      8
Pogromsky, A. Yu      37 38 51
Polak, E. L.      41 90 118
Pole assignment      74
Pole assignment, regulation      3
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте