Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis
Berezin F.A., Kirillov A.A. (ed.) — Introduction to Superanalysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Superanalysis

Авторы: Berezin F.A., Kirillov A.A. (ed.)

Аннотация:

The first three chapters were prepared for publication by Berezin himself and thus have been improved but slightly. They contain the basic facts on Grassmann algebras, differentiation and integration of functions of anticommuting variables, as well as on the advancement of the linear algebra technique in Z2-graded spaces. All this material is described in detail for a reader who is not familiar with the subject.
Then, according to the author's intention, the global theory of super-manifolds, the theory of Lie superalgebras and supergroups and their representations were to be discussed. Finally, the second part of the book was to be devoted to applications.
From all this material only Chapter 6, on Lie superalgebras, and a preliminary version of Chapter 4 devoted to supermanifolds, were found among Berezin's completed manuscripts. In addition to that, part of the book was explained by Berezin several years ago in a series of five preprints of the Institute of Theoretical and Experimental Physics (ITEP), Moscow.
For the present edition, Chapter 4 was completely rewritten by V. P. Palamodov. Its content goes beyond that sketched by Berezin and consists of new results (for instance, the construction of the example of a nonretractable complex supermanifold of dimensions (4,2)). Although the reader's mathematical knowledge is here assumed to be more advanced in comparison with the previous chapters, we hope that all the material presented is clearly explained and of interest to theoretical physicists.
The fifth chapter of the present book corresponds to the sixth chapter of Berezin's manuscript. The text was only slightly improved upon by the editor.
The second part of the book consists of the texts of the above-mentioned ITEP preprints supplemented by two appendices, one (Appendix II) having been written by V. I. Ogievetsky. The texts of the preprints are, in the main, unchanged. Only some paragraphs which are treated in the first part of the book were omitted and some misprints and inaccuracies corrected.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1 edition

Год издания: 1987

Количество страниц: 424

Добавлена в каталог: 10.04.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Representation of supergroups, analytic      307
Representation of supergroups, U(p, q), C(m, n)      344
Representation, character of      307
Restriction of element with respect to homomorphism      58
Restriction of sheaf      136
Restriction, standard      58
Retraction      157
Ring, homomorphism of      136
Ring, local      137
Ringed space      138
Ringed space, local      140
Ringed space, morphism of      138
Ringed space, subspace of      139
Ringed space, subspace of, closed      139
Ringed space, subspace of, open      139
Ringed space, underlying space of      138
Ringed space, underlying space of, $Z_{+}(Z_{2})$-graded      167
Root, (odd, even)      237
Root, vector (odd, even)      237
Roots of an ideal sheaf      139
Schur's lemma      121
Section      4 5
Section of fibre space      134
Section, global      4 5
Set of roots of an ideal sheaf      139
Sheaf      131
Sheaf as a fibre space      133
Sheaf of algebras      5
Sheaf of sections      134
Sheaf, axioms      132
Sheaf, generated by a presheaf      134
Sheaf, ideal      139 146
Sheaf, preimage of      136
Sheaf, quotient      135
Sheaf, structural      4 138
Sheaves, morphisms of      135
simplification      194
Space, complex-analytic      143
Special basis of algebras      120
Spectrum of the ordered set of elements of $\Lambda^{E}$      57
Standard basis in $\mathbb{K}^{p, q}$      92
Standard homomorphism of restriction      58
Stratification of a supermanifold      146
Stratification of a supermanifold, infinitesimal      154
Subalgebra of a Grassmann algebra      52
Subalgebra, Cartan, of type I (II)      237
Superalgebras      see "Lie superalgebra"
Superderivation      173
Superdeterminant      82 99 111
Supergravity      404
Supergroup      see "Lie supergroup" "Group"
Supermanifold      1 3 4 5 143
Supermanifold in general      134
Supermanifold with a Hamiltonian action of a Lie superalgebra      218
Supermanifold, complex-analytical      145
Supermanifold, constructions of      146
Supermanifold, differential geometry of      15
Supermanifold, dimension of      5
Supermanifold, direct product of      150
Supermanifold, integration over      11
Supermanifold, nonretractable      164
Supermanifold, representations by equations      6
Supermanifold, simplicity of      166
Supermanifold, smooth      143
Supermanifold, stratification of      154
Supermanifold, structures      11
Supermanifold, support of      154
Supermanifold, tensor field on      15
Supermanifold, topology of      8
Superregular element of $G_{0}$      264
Superregular element of a Cartan subalgebra      237
Supersymmetry      404
Supertrace      99
System of generators in $\Lambda_{p, q}(U)$      60
System of generators of algebra      31
System of generators of Grassmann algebra      39
System of generators, generators of ideal      34
System of topological generators of ideal      34
Tensor field on supermanifolds      15
Theorem on implicit functions      66
Theorem, Burnside's      122
Theorem, Liouville      109
Theorem, Poincare — Birkhoff — Witt      279
Value      139
Vectorfield, Hamiltonian, function of      204
Weyl group of the Grassmann conjugate space $\tilde{\mathscr{H}}(N)$      292
Weyl group of the Lie algebra $\mathscr{H}(N)$      292
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте