Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Berkeley H. — Mysticism in Modern Mathematics
Berkeley H. — Mysticism in Modern Mathematics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mysticism in Modern Mathematics

Àâòîð: Berkeley H.

Àííîòàöèÿ:

To the Pythagoreans belongs by common consent the distinction of having raised mathematics to the level of a science. We may well feel some astonishment when we reflect that this great achievement, which implies in the achievers the spirit of sober scientific reasoning, should nevertheless have been the work of men who were also enthusiasts and mystics. But we can find it in no way strange that the complication of these disparate tendencies should have resulted in the profession of philosophical doctrines, respecting the world-significance of numbers, which to us appear fantastic to the verge of absurdity, and which not improbably wore that appearance to some few contemporary intellects, more critical if less original and creative.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1910

Êîëè÷åñòâî ñòðàíèö: 264

Äîáàâëåíà â êàòàëîã: 09.04.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abstraction as a mental process      159
Abstraction, assumption not relevant to      177
Abstraction, function of, in relation to articulate sounds      11
Abstraction, perception or imagery a condition of      159
Algebra as Arithmetica Universalis      121 123 126
Algebra, laws of      87
Algebra, relation to arithmetic      80 81
Algebraic Factors, not expressive of algebraic quantities, no      118
Algebraic Multiplication in relation to power and root      104 118
Algebraic Multiplication, current explanation of      99 100
Algebraic Multiplication, mystical view of      103
Algebraic Multiplication, not an extension of the arithmetical notion      117
Algebraic Multiplication, sophisms involved in this explanation      99—102
Algebraic Multiplication, unintelligibility of, save as a dual process      102—104
Algebraic Quantity and the Law of Association      86 88—89 116
Algebraic Quantity as synthesis of two distinct relations      120
Algebraic Quantity, nature of the notion of      98
Algebraic Quantity, symbolization of the series of      97
Analogy as the foundation of explanation      220
Angle, the, analysis of the notion of      166—167
Association, mnemonic, in relation to symbolism of numeration      60
Assumption in relation to existence of geometrical entities      173—174
Assumptions and definitions, confusion between      162 note
Assumptions, the, alleged to be made by Euclid      172 182
Axiom of Parallels as a generalization from experience      194
Axiom of Parallels, alleged uncertainty of      192
Axiom of Parallels, broken up into two subordinate propositions      192
Axiom of Parallels, Cayley’s view of      193 240
Axiom of Parallels, close analogy of these with axioms of magnitude      195—196
Axiom of Parallels, Euclid’s statement of      191—192
Axiom of Parallels, logically equivalent to two axioms of direction      195
Axiom of Parallels, neither a definition nor an axiom      191—192
Axiom of Parallels, self-evident but not axiomatic      255
Axiom of Parallels, suggestion of the empirical in Euclid’s form of      195
Axioms are synthetic and apodeictic judgements      175
Axioms in geometry, definition of      186 254
Axioms in relation to magnitude and direction      254
Axioms of magnitude, Poincare on      174
Axioms, Euclid’s sub-sumable under two general propositions      186—189
Axioms, F. Klein, on nature of      179
Axioms, the veductio ad absurdum argument in connexion with      189 190
Binet, A. on perception and reasoning      42
Boole, G. on conditions of valid reasoning by the aid of symbols      77—78
Boole, G., criticism of      78—79
Calculus, interpretable in another field of thought      82
Calculus, uninterpreted(Whitehead)      75
Cayley, A. of Distance”      239—242
Cayley, A. on mathematical ima-ginaries      64 65 67—70 251
Cayley, A. on the axiom of parallels      193 240
Cayley, A., metaphysical outlook upon the fundamental notions of mathematics      72—73
Cayley, A., relation to non-Euclidean geometry      241 242
Chasles on geometrical imaginaries      128—130
Chrystal, G. on algebraic equality      95
Chrystal, G. on algebraic multiplication      99 100 101
Chrystal, G. on algebraic quantity and law of association      88—89
Chrystal, G. on heterogeneity of positive and negative quantity      92—93
Chrystal, G. on imaginary quantity      113 114
Chrystal, G. on the relation of power and root      107 110
Chrystal, G. on the series of algebraic quantity      97
Clifford, W.K. on elementary flatness of surface      220 221
Clifford, W.K., analogous conception in relation to space      222
Clifford, W.K., analysis of the axiom of free mobility      199—203
Clifford, W.K., criticism of this analysis      199—203
Clifford, W.K., popular exposition of metageo-metry      219—222
Clifford, W.K., views criticized      220—222
Conant, Professor, on the nature of the number-concept      56—59
Concept and meaning      69
Concept, definition of(Dictionary of Philos. and Psych.)      46
Congruence in Geometry      158
Congruence, assumption of, relevant to mensuration, meaningless in relation to geometry      199 203
Congruence, criticism of explanation of, as a geometrical assumption by (1) Clifford      199—203
Congruence, criticism of explanation of, as a geometrical assumption by (2) Russell      203—205
Congruence, Euclid’s alleged tacit assumption of      198—199
Congruence, so-called axiom of, and Euclid’s Axiom      1 205 255
Congruence, verbal equivalents of the notion of      205
Contingent Relations in Geometry, principle of      128—130
Contingent Relations, same as Poncelet’s principle of continuity      130
Contradiction, real and nominal      206—207
Conventionality of language      12
Conventions in Algebra, import of      81
Conventions, validity of      81
Couturat, L. on the foundations of geometry      154—157
Couturat, L. on the role of intuition in geometry      169
Couturat, L., views criticized      154—157
Darwin and Max Muller’s views on language      24
Definition and meaning      14 15
Definition of geometry      152
Definition of space useless      154
Definition, limit of process of      4 14
Definition, nature and function of, compared      18
Definition, real nature of      16 17
Definition, Riemann on, in geometry      223
Definition, technical sense of, in geometry      154
Demonstration, nature and object of, in geometry      169—171
Demonstration, R. Sim-son on      169
Demonstration, the Epicureans and      169 170
Direction, notion of, in connexion with non-Euclidean spaces      248—249
Direction, notion of, involved in the conception of linear shape      168 254
Direction, relation to notion of straightness      160 162 163
Distance, ambiguity of term in relation to descriptive principles in geometry      241 257
Elementary Flatness of space      222
Elementary Flatness of surface      220—221
Epicureans, the, and the object of demonstration in geometry      169 170
Equality of spaces, notion of, derived from congruence of figurer      199
Existence, meaning of, in relation to geometrical entities      173—174
Factors in Algebra not expressive of algebraic quantities, no      118
Fran5ais, J.F. on the representation of imaginary quantities      121
Free mobility      see Congruence
Galton, F. on thought without words      28 39 40
Geometry, a priority of (Russell)      164 and note
Geometry, Clifford’s definition of      199 253
Geometry, imaginary elements of      65 68—73 Chap.
Geometry, non-Euclidean, origin of      153
Geometry, not a physical science      253
Geometry, premisses of      255
Geometry, pure, relation of symbolism to      6
Geometry, systems of, and the relevance of truth to      178
Hamilton, Sir W.R. on derivation of concept of number      56
Hamilton, Sir William, on language as an aid to thought      27—29
Helmholtz on Riemann’s conception of manifoldness      230
Helmholtz, analogical value of “Flat-land” and “Sphereland”      218 219
Helmholtz, fallacies involved in this exposition      216—218
Helmholtz, popular exposition of metageometry      213—219
Henrici, O. on Euclid’s assumptions      172
Henrici, O. on Euclid’s axioms of magnitude      187
Henrici, O. on imaginary loci      131—133
Homonymy in relation to algebraic expression      90
Image, representative and symbolic, functions of, in the development of thought      42—44 250
Imaginaries, mathematical, doctrine of      Chap. VI
Imaginaries, nature of enigma involved in, according to (1) Cayley      68 69 70 85
Imaginaries, nature of enigma involved in, according to (2) Whitehead      79 85
Imaginary, loci      69 71
Imaginary, loci, geometrical doctrine of      Chap. IX
Imaginary, objects (of geometry) in relation to experience      73
Imaginary, point, notion of, how arrived at analytically      69
Imaginary, point, notion of, how arrived at geometrically      70
Imaginary, points, a “factor” in the definition of real geometrical relations      135
Imaginary, points, derivation of, in analytical geometry      142—145
Imaginary, points, introduction of, in geometrical involution      132—134
Imaginary, quantity      69
Imaginary, quantity, textbook derivation of the notion, and sophisms involved in this derivation      113—115
Imaginary, quantity, two senses of the “interpretation” of, in geometry      146—147
Imaginary, unit, a “factor” in the expression of algebraic quantity      126
Indefinables in mathematics      154 156
indices      see “Power and Root”
Intercommunication, presupposition involved in      4 8 10
Intuition, role of, in geometry      169 170
Involution in geometry      132—134
Kantians and non-Euclidean geometry      V
Klein, F. on nature of geometrical axioms      179
Klein, F. on Riemann’s conception of space      184
Klein, F., connexion of Cayley’s Theory of Distance with Metageometry      241 242
Language and thought      Chap. II
Language as a potential source of illusory beliefs      13
Language as an instrument of reason      Chap. III
Language, essentially conventional nature of      9
Language, functions of, as embodiment of acquired knowledge and as aid in reasoning      29 46—47
Language, learning of, mechanical by comparison with origination and development of      11
Language, not a necessary condition of forming abstract ideas      12 46
Language, subjective and objective aspects of      15 18 19 49
Language, the original and instinctive in expression replaced by the artificial and conventional      10
Laws are symbolic of processes of thought      87
Laws of Algebra, no difference between, and conventions of same      81
Length, Euclid’s conception of, as involved in his definition of the line      167
Length, Russell’s derivation of the notion      167
Length, Russell’s derivation of the notion, inadmissible      167—168
Light, rectilinear propagation of, in relation to geometrical theory      246—247
Linear shape, analysis of the notion of      168
Lobatschewsky and the conception of the straight line      181
Lobatschewsky on astronomical observations as a test of geometrical theory      244
Lobatschewsky, his geometry in relation to the modifiability of the conception of space      211—212
Lobatschewsky, his hypothesis regarding parallels      207
Lotze on the futility of astronomical observations as a test of geometrical theory      244
Lotze, ineffectiveness of his attack on non-Euclidean geometry      218
Lotze, Russell’s criticism of      245
Love, A.E.H., on number and quantity      61—62
Manifoldness, ambiguities in definition of      229—231
Manifoldness, continuous, positions and colours      229
Manifoldness, notion of (Helmholtz)      230
Manifoldness, notion of (Riemann)      229
Manifoldness, relation of notion of, to that of space      257
Mathematics, apparent sophistry and paradox in      6—7
Mathematics, symbolism in relation to      6
Mathematics, the domain of definite and stable concepts      6
Max Muller and Whitney, conflicting views of language harmonized      48—49
Max Muller, doctrine of the identity of thought and language      20—26
Max Muller, his doctrine in conflict with Darwin’s views      24—25
Max Muller, names as an essential element of thought      21—22
Max Muller, sense in which he uses the terms “identity” and “inseparableness”      21
Max Muller, words the signs of concepts not of things      23
Meaning and definition      14
Meaning and symbol, mutually constituted by association      8
Meaning and thought, difference between      8
Meaning of an idea      72
Meaning, stability of, in relation to symbol      13
Measure of Curvature as an inherent property of surface      235—236
Measure of Curvature, a metaphorical expression in relation to a manifold, and to space      233—234
Measure of Curvature, fallacious analogy between surface and space      237—238
Mensuration, relation of, to metrical geometry      243—248 258
Metaphor, expression of analogy      18
Metaphysics, effect of conflict of systems of      3
Metaphysics, value of, as an intellectual exercise      3
Mill, J.S. on the existence of, and the conception of, geometrical entities      163 note
Mill, J.S. on the nature of definition      16
Mill, J.S. on the truths of geometry      72
Mill, J.S., Taine’s criticism of      16
Muscular Adjustment, function of, in perception of shape      160—161
Mystical Illusion in geometry as in algebra, prompted by anterior use of semi-paradoxical expressions      136
Mystical Tendency in geometry as compared with algebra      131 142
Mysticism and symbolic ratiocination      5 65 71 93 95 102 118
Mysticism and the Pythagoreans      iii
Mysticism in the derivation of mathematical notions      64
Mysticism, influence on, of psychological investigation      iv;
Mysticism, special sense of the term      5 note
Names and concepts      23
Names and things      16 23
Names of numbers of geometrical shapes      158—159
Names of numbers, interdependence of definitions of      54 note
Names, functions of, in the development of conception      44 250
Names, how their import and purpose are learnt      11
Names, J.S. Mill and Taine on function of      16
Names, meanings of, relative to purpose      34
Names, metaphorical employment of      35
Nature, discussion on “thought without words” quoted from      39—41
Number and quantity in algebraic symbolism      63
Number and quantity in the abstract      61—62
Number as conceived by the civilized man and by the savage      57 58
Number as such neither positive nor negative      116
Number, conception of      53—54 251
Number, Cou-turat and Russell on the definition of      54 note
Number, interdependence of concepts of      54
Number, relation of, to conception of order      55—56
Number, serial association of signs common to all systems of expressing      60
Number, the defining of symbols of      54 and note
Number, transition from representation to symbolism of      58—60
Numbers as co-ordinates in geometry      242
Numerals and the use of the fingers to express numbers      59
Paradox as a means of expressing real relations      130 132 134 135—136
Paradox, inception of in the metaphorical expression of real relations      141
Paradox, sanction of      147
Paradox, test of valid use of      253
Particular, the, and the general, unthinkable save in relation to one another      155—156
Perception of shape      160—161
Perception, a rudimentary process of reasoning (Binet)      42
Perpendicularity, Euclid’s alleged assumption of the existence of      180
Perpendicularity, irrelevance of demonstration to this symbolization      125
Perpendicularity, relation of, symbolized by $\sqrt{-1}$      122
Plane, extension of the meaning of term      211
Plane, name of an identity of surface-shape      158
Plane, the, as standard of comparison      159
Plane, the, empirical origin of conception of      163
Poincare, H. on nature of synthetic judgements a priori      176
Poincare, H. on the existence of mathematical entities      174
Poincare, H. on the nature of geometrical axioms      175—177
Poincare, H. on the validity of Euclidean geometry      245
Poincare, H., the fundamental axioms of geometry      176
Postulates, Euclid’s are complementary definitions of the straight line and circle      182—183
Postulates, nature of, in Euclid’s Elements      182—185
Power and Root and relations of algebraic quantity      108—109
Power and Root and the employment of indices      107—108
Power and Root, arithmetical definition of      106
Power and Root, implied algebraic definition of      106—107
Power and Root, inconsistency in the use of indices of      108—109 111 118
Power and Root, validation of this inconsistency      108 111 112 119
Pragmatism      as a solvent of mysticism iv
Properties of space, ambiguity of the term      151—152
Pythagoreans, the      mental characteristics iii
Quantities, conventional test of inequality      93 116
Quantities, positive and negative, alleged heterogeneity of      93 116
Quantities, sophisms involved in this test      94—97
Quantity, not, as such, either positive or negative      116 120 122
Quantity, vicious reaction of algebraic symbolism on the notion of      252
Reasoning of animals      30 32—33 35
Reasoning of animals, compared with man      35
Reasoning, process of, in relation to typical imagery and to symbolic imagery      5
Reasoning, subjects of, distributable between two extremes      5
Reasoning, with and without the aid of words      39—41
Reid on definition      14
Riemann, conception of space as finite but unbounded      184
Riemann, his alternative to Euclid’s Axiom      10 226
Riemann, outline of dissertation on foundations of geometry      223—224
Riemann, outline of dissertation on foundations of geometry and criticism of the filiation of ideas in      224—226
Riemann, relation of his mathematical analysis to this notion      232
Riemann, relation of his mathematical analysis to this notion and of space to this notion      232
Riemann, the notion of manifoldness and its obscurities      227—232
Right Angle, the      see Perpendicularity
Russell, B.A.W. criticism of Lotze      245
Russell, B.A.W. on algebraic imaginaries      74 83 note
Russell, B.A.W. on congruence and rigid bodies      204
Russell, B.A.W. on Helm-holtz’s “Flatland” and “Sphere-land”      218
Russell, B.A.W. on intuition in geometry      170
Russell, B.A.W. on the axiom of congruence      203—205
Russell, B.A.W. on the axiom of parallels      192
Russell, B.A.W. on the derivation of the notion of length      167
Russell, B.A.W. on the irrelevance of motion to the foundations of geometry      204
Russell, B.A.W. on the reduction of metrical to projective principles      242 note
Russell, B.A.W. on the relation between different space-constants      237—238
Signs, rule of, in algebra      90—91 98—99
Simson, R. on demonstration in geometry      169
Smith, H.J. Stephen on the nature of Lobatschewsky’s assumption      207
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå