Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E. — Quantitative Methods For Investment Analysis
Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E. — Quantitative Methods For Investment Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Quantitative Methods For Investment Analysis

Àâòîðû: Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E.

Àííîòàöèÿ:

As part of the CFA Institute Investment Series, the Second Edition of Quantitative Investment Analysis has been designed for a wide range of individuals, from graduate-level students focused on finance to practicing investment professionals. This globally relevant guide will help you understand quantitative methods and apply them to today's investment process.

In this latest edition, the distinguished team of Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle update information associated with this discipline; improve the presentation and coverage of several major areas, including regression, time series, and multifactor models; and introduce an even greater variety of investment-oriented examples—which reflect the changes currently taking place in the investment community. Throughout the text, special attention is paid to ensuring the even treatment of subject matter, consistency of mathematical notation, and continuity of topic coverage that is so critical to the learning process.
Valuable for self-study and general reference, this book provides clear, example-driven coverage of a wide range of quantitative methods. Topics discussed include:

* The time value of money
* Discounted cash flow applications
* Common probability distributions
* Sampling and estimation
* Hypothesis testing
* Correlation and regression
* Multiple regression and issues in regression analysis
* Time-series analysis
* Portfolio concepts

And to further enhance your understanding of the tools and techniques presented here,don't forget to pick up the Quantitative Investment Analysis Workbook, Second Edition—an essential guide containing learning outcomes and summary overview sections along with challenging problems and solutions.
With each author bringing his own unique experiences and perspectives to the table, the Second Edition of Quantitative Investment Analysis distills the knowledge, skills, and abilities you need to succeed in today's fast-paced financial environment. Filled with in-depth insights and practical advice, Quantitative Investment Analysis, Second Edition offers a comprehensive treatment of quantitative methods that combines best practices with solid theory.


ßçûê: en

Ðóáðèêà: Ýêîíîìèêà è ôèíàíñû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2

Ãîä èçäàíèÿ: 2007

Êîëè÷åñòâî ñòðàíèö: 721

Äîáàâëåíà â êàòàëîã: 11.03.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Multifactor models in portfolio management, passive management      633
Multifactor models in portfolio management, risk premium      638
Multifactor models in portfolio management, sensitivity      635
Multifactor models in portfolio management, summary      671—672
Multifactor models in portfolio management, types      633—634
Multinomial formula for labeling problems      216—217
Multiperiod forecasts and chain rule of forecasting      533—536
Multiple linear regression      442—476
Multiple linear regression, adjusted $R^{2}$      457
Multiple linear regression, analysis of variance      445 454—456
Multiple linear regression, application example      443—447
Multiple linear regression, assumptions      448—453
Multiple linear regression, coefficient of variance, adjusted      457
Multiple linear regression, definition      442
Multiple linear regression, dummy variables usage in      458—462
Multiple linear regression, examples      443—447 449—453 453—454 458—462 464 465—467 474—475
Multiple linear regression, heteroskedasticity      see "Heteroskedasticity"
Multiple linear regression, introduction      442—448
Multiple linear regression, multicollinearity      see "Multicollinearity"
Multiple linear regression, partial regression coefficients      447 448
Multiple linear regression, partial slope coefficients      447
Multiple linear regression, predicting dependent variable in      453—454
Multiple linear regression, serial correlation      see "Serial correlation and regression"
Multiple linear regression, significance of      454—456
Multiple linear regression, slope coefficients      447 448 454—455
Multiple linear regression, uncertainty in      454
Multiple linear regression, violations of assumptions      462—476
Multiplication rule for independent events      189
Multiplication rule of counting      215—216
Multivariate distribution      251
Multivariate normal distribution      251
Mutually exclusive      181
Net present value (NPV), computing      58
Net present value (NPV), definition      58
Net present value (NPV), internal rate of return and      58—65
Net present value (NPV), internal rate of return versus rule of      63—65
Net present value (NPV), rule and      58—60
Newey — West method      472
Node      245
Nominal risk-free interest rate      3
Nominal scales      89
Noncovariance-stationary time series      528
Nonlinear relation      381 382
Nonparametric inference      356—360
Nonstationarity      489 490 529
Normal distribution      250—257
Normal distribution, applications      257—260
Normal distribution, asset prices and      252
Normal distribution, bivariate      251
Normal distribution, characteristics      250—251
Normal distribution, diagram of      250
Normal distribution, equity portfolio, diversified, and      252
Normal distribution, Introduction      250
Normal distribution, joint      251
Normal distribution, multivariate      251
Normal distribution, portfolio return and      251
Normal distribution, range of possible outcomes      250
Normal distribution, roles of      250
Normal distribution, standard      251
Normal distribution, unit      251
Number of periods, solving for      29
One-tailed probabilities table      688
Opportunity cost      2
optimizer      601
Option pricing model example, volatility as used in      264—265
Ordinal scales      90
Ordinary annuity, definition      13
Ordinary annuity, equal cash flows      13—14
Ordinary least squares (OLS), definitions      448 519
Ordinary least squares (OLS), Durbin — Watson statistic for regression      471
Ordinary least squares (OLS), regression coefficients estimates      473
Ordinary least squares (OLS), serial correlation and      469 472
Out-of-sample forecast errors      536 537—538
Out-of-sample test      306 307
Outcomes      180
p-value      see "Probability value"
Paired comparisons test      347
Paired observations      347
Pairs arbitrage trade      184
Panel data      291 396
PARAMETER      89 286
Parameter instability      418
Parametric test      356 357
Passive management      633
Pearson coefficient of skewness      146
Percentiles      120 121 122—124
Perfect collinearity      449
Performance appraisal      65
Performance measurement      65
Permutation      217—218
Perpetual annuity      23—25
Perpetuity definition      13
Platykurtic      149 150
Point estimators      295—297
Pooled estimate      342
Population mean      103—104 253
Population mean, confidence intervals for      297—303
Population mean, point estimators of      295—297
Population, definitions      89 253
Population, error variance      469
Population, samples      see "Sample" "Sampling"
Population, standard deviation      130—132
Population, variance      129—130
Portfolio as stand-alone investments      619—620
Portfolio return, determining      202
Portfolio return, management      65—72
Portfolio return, money-weighted rule of return      66—67
Portfolio return, normal distribution and      251
Portfolio return, random variables and      202
Portfolio return, time-weighted rate of return      67—72
Portfolio, adding investment decision      620—622
Portfolio, analysis and weighted mean      112—113
Portfolio, arbitrage pricing theory      see "Arbitrage pricing theory"
Portfolio, capital allocation line      610—617
Portfolio, capital asset pricing model      see "Capital asset pricing model (CAPM)"
Portfolio, capital market line      617 618
Portfolio, choice from mean-variance perspective      619—623
Portfolio, choice with risk-free asset      609—617
Portfolio, concepts      587—683
Portfolio, determining asset allocation      622—623
Portfolio, diversification and size      602 605—609
Portfolio, efficient      590
Portfolio, efficient frontier      594 599 602
Portfolio, examples      595—597 603—605 608—609 610—614 616—617 621—622 627 630—632 636 639—642 644—645 653—655 658—659 660—663 663—664 665—666
Portfolio, expected return and variance of return      202—211
Portfolio, factor      663—664
Portfolio, inefficient      594
Portfolio, introduction      589
Portfolio, mean-variance analysis      see "Mean-variance analysis"
Portfolio, minimum-variance      590—599 629—632
Portfolio, multifactor models      see "Multifactor models in portfolio management"
Portfolio, performance attribution      649
Portfolio, possibilities curve      592
Portfolio, pure factor      638
Portfolio, risk versus return      597 599 613
Portfolio, selection      590
Portfolio, tangency      610 617 618 622
Portfolio, three-asset      599—602
Portfolio, tracking      664—666
Portfolio, two-asset      590—591 592 595—597
Portfolio, variance      202 205
Prediction intervals      416—418
Present value (PV)      see also "Net present value (NPV)"
Present value (PV) of series of cash flows      18—26
Present value (PV) of single cash flow      15—18
Present value (PV), definition      4
Price relative      262
Priced risk      633 635
Principal definition      4
Probabilities for common stock portfolio example      256—257
probability      179—230
Probability distributions, common      231—283
Probability distributions, common, binomial distribution      236—246
Probability distributions, common, continuous random variables      246—266
Probability distributions, common, definition      232
Probability distributions, common, discrete random variables      232—246
Probability distributions, common, discrete uniform distribution      234—236
Probability distributions, common, introduction      232
Probability distributions, common, Monte Carlo simulation      266—272
Probability distributions, common, summary      272—274
Probability, a priori      182 215
Probability, additional rule for      187—189
Probability, approaches to estimating      182
Probability, binomial      240
Probability, conditional      184 185 186—187 191—192
Probability, definition      181
Probability, density function (pdf)      234 246 247 248
Probability, distributions      see "Probability distributions common"
Probability, down transition      245
Probability, empirical      182
Probability, function      234
Probability, inconsistent      184
Probability, introduction      180
Probability, inverse      see "Bayes' formula"
Probability, joint      185 209
Probability, marginal      184
Probability, mass function (pmf)      234
Probability, multiple rule for      185
Probability, objective      182
Probability, portfolio expected return and variance of return      202—211
Probability, posterior      213
Probability, principles of counting and      215—218
Probability, prior      212 213
Probability, profiting from inconsistent      183—184
Probability, properties of      181
Probability, stated as odds      182—183
Probability, subjective      182
Probability, summary      219—221
Probability, topics in      211—218
Probability, total probability rule      192 193—194
Probability, total probability rule for expected value      197
Probability, unconditional      184 185
Probability, up transition      245
Probability, value      334—335 407 447
Probit models      490 491—492
Pseudorandom numbers      268
Pure discount instruments      72
Qualitative dependent variables, models with      490—492
Quantiles      120—126
Quantiles in investment practice      124—126
Quantiles, analysis of variance and      455
Quantiles, commonly used, most      120—124
Quartiles      120 121 122—124
Quintiles      120 122—124
Random number generator      268 269
Random variable(s)      180
Random variable(s), Bernoulli      236—238
Random variable(s), binomial      236—246
Random variable(s), definition      232
Random variable(s), independence for      210
Random variable(s), standardizing      255
Random variable(s), uncorrelated      211
Random variable(s), upper and lowercase letters and      233
Random walks      490 541—545
RANGE      126—127
Ratio scales      90
Real risk-free interest rate      3
Regression analysis      see "Linear regression" "Model "Multiple
Regression coefficients      395 443 538—540
Rejection point (critical value) for test statistic      330—331 333
Relative dispersion      139
Relative frequency      103
Relative frequency, cumulative      94
Relative frequency, definition      94
Reliability factors, basis of computing      303
Residual autocorrelations      530
Return distributions, kurtosis in      149—153
Return distributions, properties of      88
Return distributions, semivariance and      136
Return distributions, symmetry and skewness in      144—149
Risk premium test      327 332 333—334
Risk-adjusted net value added (RANVA)      449—451 453—454
Robust standard errors      467 468 472
Root mean squared error (RMSE)      537 566
Roy's safety-first criterion      257 258 260
Rule of 72      29
Safety-first rules      257—259
Sample statistics definition      89
Sample, covariance      379—381
Sample, definition      89
Sample, distribution of mean      291—295
Sample, excess kurtosis      150—153
Sample, mean      103 104—105 194 253 287
Sample, mean formula      104
Sample, populations and      89
Sample, random, simple      286—287
Sample, relative skewness      147
Sample, selection bias      308—309
Sample, size selection      303—305
Sample, skewness      147
Sample, standard deviation      133—135 253
Sample, variance      132 133—134
Sampling      285—322
Sampling, biases in investment research      310—311
Sampling, central limit theorem      286 292—295
Sampling, data-mining bias      306—308
Sampling, definition      286
Sampling, delistings selection bias      309
Sampling, distribution of sample mean      291—295
Sampling, distribution of statistics      287
Sampling, error and      286 287 291 303
Sampling, introduction      285—286
Sampling, look-ahead bias      309 311
Sampling, out-of-sample test      306
Sampling, plan      287
Sampling, point and interval estimates of population mean      295—305
Sampling, random sampling, simple      286—287
Sampling, reasons for      286
Sampling, selection bias      308—309 333
Sampling, stratified random sampling      288—289
Sampling, summary      311—313
Sampling, survivorship bias      308—309 310—311 333
Sampling, systematic      287
Sampling, time-period bias      310 311 333
Sampling, time-series and cross-sectional data      289—291
Scatter plots      376—377 378 379 383
Seasonality in models      555—558 567 568
Security Market Line (SML)      618
Selling short      184
Semideviation      135—136 137
Semilogarithmic scales      154
Semivariance      135 136 137
Serial correlation and regression errors      468—473 476
Serial correlation and regression errors, autoregressive model and detecting      529—532
Serial correlation and regression errors, consequences of      469
Serial correlation and regression errors, consistent standard errors      472
Serial correlation and regression errors, correcting for      472—473
Serial correlation and regression errors, Dubin — Watson statistic and      470—472 527
Serial correlation and regression errors, first-order      469
Serial correlation and regression errors, negative      469
Serial correlation and regression errors, positive      469
Serial correlation and regression errors, summary      476
Serial correlation and regression errors, testing for      470—472
Sharpe ratio      137 141—144
Sharpe ratio as risk-adjusted performance measure      72 126
Sharpe ratio, calculating      143—144 290
Sharpe ratio, confidence interval for population mean of, examples      300 302—303
Sharpe ratio, definition      289
Sharpe ratio, formula      141
Sharpe ratio, limitation      142
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå