Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E. — Quantitative Methods For Investment Analysis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Quantitative Methods For Investment Analysis
Àâòîðû: Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E.
Àííîòàöèÿ: As part of the CFA Institute Investment Series, the Second Edition of Quantitative Investment Analysis has been designed for a wide range of individuals, from graduate-level students focused on finance to practicing investment professionals. This globally relevant guide will help you understand quantitative methods and apply them to today's investment process.
In this latest edition, the distinguished team of Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle update information associated with this discipline; improve the presentation and coverage of several major areas, including regression, time series, and multifactor models; and introduce an even greater variety of investment-oriented examples—which reflect the changes currently taking place in the investment community. Throughout the text, special attention is paid to ensuring the even treatment of subject matter, consistency of mathematical notation, and continuity of topic coverage that is so critical to the learning process.
Valuable for self-study and general reference, this book provides clear, example-driven coverage of a wide range of quantitative methods. Topics discussed include:
* The time value of money
* Discounted cash flow applications
* Common probability distributions
* Sampling and estimation
* Hypothesis testing
* Correlation and regression
* Multiple regression and issues in regression analysis
* Time-series analysis
* Portfolio concepts
And to further enhance your understanding of the tools and techniques presented here,don't forget to pick up the Quantitative Investment Analysis Workbook, Second Edition—an essential guide containing learning outcomes and summary overview sections along with challenging problems and solutions.
With each author bringing his own unique experiences and perspectives to the table, the Second Edition of Quantitative Investment Analysis distills the knowledge, skills, and abilities you need to succeed in today's fast-paced financial environment. Filled with in-depth insights and practical advice, Quantitative Investment Analysis, Second Edition offers a comprehensive treatment of quantitative methods that combines best practices with solid theory.
ßçûê:
Ðóáðèêà: Ýêîíîìèêà è ôèíàíñû /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2
Ãîä èçäàíèÿ: 2007
Êîëè÷åñòâî ñòðàíèö: 721
Äîáàâëåíà â êàòàëîã: 11.03.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Multifactor models in portfolio management, passive management 633
Multifactor models in portfolio management, risk premium 638
Multifactor models in portfolio management, sensitivity 635
Multifactor models in portfolio management, summary 671—672
Multifactor models in portfolio management, types 633—634
Multinomial formula for labeling problems 216—217
Multiperiod forecasts and chain rule of forecasting 533—536
Multiple linear regression 442—476
Multiple linear regression, adjusted 457
Multiple linear regression, analysis of variance 445 454—456
Multiple linear regression, application example 443—447
Multiple linear regression, assumptions 448—453
Multiple linear regression, coefficient of variance, adjusted 457
Multiple linear regression, definition 442
Multiple linear regression, dummy variables usage in 458—462
Multiple linear regression, examples 443—447 449—453 453—454 458—462 464 465—467 474—475
Multiple linear regression, heteroskedasticity see "Heteroskedasticity"
Multiple linear regression, introduction 442—448
Multiple linear regression, multicollinearity see "Multicollinearity"
Multiple linear regression, partial regression coefficients 447 448
Multiple linear regression, partial slope coefficients 447
Multiple linear regression, predicting dependent variable in 453—454
Multiple linear regression, serial correlation see "Serial correlation and regression"
Multiple linear regression, significance of 454—456
Multiple linear regression, slope coefficients 447 448 454—455
Multiple linear regression, uncertainty in 454
Multiple linear regression, violations of assumptions 462—476
Multiplication rule for independent events 189
Multiplication rule of counting 215—216
Multivariate distribution 251
Multivariate normal distribution 251
Mutually exclusive 181
Net present value (NPV), computing 58
Net present value (NPV), definition 58
Net present value (NPV), internal rate of return and 58—65
Net present value (NPV), internal rate of return versus rule of 63—65
Net present value (NPV), rule and 58—60
Newey — West method 472
Node 245
Nominal risk-free interest rate 3
Nominal scales 89
Noncovariance-stationary time series 528
Nonlinear relation 381 382
Nonparametric inference 356—360
Nonstationarity 489 490 529
Normal distribution 250—257
Normal distribution, applications 257—260
Normal distribution, asset prices and 252
Normal distribution, bivariate 251
Normal distribution, characteristics 250—251
Normal distribution, diagram of 250
Normal distribution, equity portfolio, diversified, and 252
Normal distribution, Introduction 250
Normal distribution, joint 251
Normal distribution, multivariate 251
Normal distribution, portfolio return and 251
Normal distribution, range of possible outcomes 250
Normal distribution, roles of 250
Normal distribution, standard 251
Normal distribution, unit 251
Number of periods, solving for 29
One-tailed probabilities table 688
Opportunity cost 2
optimizer 601
Option pricing model example, volatility as used in 264—265
Ordinal scales 90
Ordinary annuity, definition 13
Ordinary annuity, equal cash flows 13—14
Ordinary least squares (OLS), definitions 448 519
Ordinary least squares (OLS), Durbin — Watson statistic for regression 471
Ordinary least squares (OLS), regression coefficients estimates 473
Ordinary least squares (OLS), serial correlation and 469 472
Out-of-sample forecast errors 536 537—538
Out-of-sample test 306 307
Outcomes 180
p-value see "Probability value"
Paired comparisons test 347
Paired observations 347
Pairs arbitrage trade 184
Panel data 291 396
PARAMETER 89 286
Parameter instability 418
Parametric test 356 357
Passive management 633
Pearson coefficient of skewness 146
Percentiles 120 121 122—124
Perfect collinearity 449
Performance appraisal 65
Performance measurement 65
Permutation 217—218
Perpetual annuity 23—25
Perpetuity definition 13
Platykurtic 149 150
Point estimators 295—297
Pooled estimate 342
Population mean 103—104 253
Population mean, confidence intervals for 297—303
Population mean, point estimators of 295—297
Population, definitions 89 253
Population, error variance 469
Population, samples see "Sample" "Sampling"
Population, standard deviation 130—132
Population, variance 129—130
Portfolio as stand-alone investments 619—620
Portfolio return, determining 202
Portfolio return, management 65—72
Portfolio return, money-weighted rule of return 66—67
Portfolio return, normal distribution and 251
Portfolio return, random variables and 202
Portfolio return, time-weighted rate of return 67—72
Portfolio, adding investment decision 620—622
Portfolio, analysis and weighted mean 112—113
Portfolio, arbitrage pricing theory see "Arbitrage pricing theory"
Portfolio, capital allocation line 610—617
Portfolio, capital asset pricing model see "Capital asset pricing model (CAPM)"
Portfolio, capital market line 617 618
Portfolio, choice from mean-variance perspective 619—623
Portfolio, choice with risk-free asset 609—617
Portfolio, concepts 587—683
Portfolio, determining asset allocation 622—623
Portfolio, diversification and size 602 605—609
Portfolio, efficient 590
Portfolio, efficient frontier 594 599 602
Portfolio, examples 595—597 603—605 608—609 610—614 616—617 621—622 627 630—632 636 639—642 644—645 653—655 658—659 660—663 663—664 665—666
Portfolio, expected return and variance of return 202—211
Portfolio, factor 663—664
Portfolio, inefficient 594
Portfolio, introduction 589
Portfolio, mean-variance analysis see "Mean-variance analysis"
Portfolio, minimum-variance 590—599 629—632
Portfolio, multifactor models see "Multifactor models in portfolio management"
Portfolio, performance attribution 649
Portfolio, possibilities curve 592
Portfolio, pure factor 638
Portfolio, risk versus return 597 599 613
Portfolio, selection 590
Portfolio, tangency 610 617 618 622
Portfolio, three-asset 599—602
Portfolio, tracking 664—666
Portfolio, two-asset 590—591 592 595—597
Portfolio, variance 202 205
Prediction intervals 416—418
Present value (PV) see also "Net present value (NPV)"
Present value (PV) of series of cash flows 18—26
Present value (PV) of single cash flow 15—18
Present value (PV), definition 4
Price relative 262
Priced risk 633 635
Principal definition 4
Probabilities for common stock portfolio example 256—257
probability 179—230
Probability distributions, common 231—283
Probability distributions, common, binomial distribution 236—246
Probability distributions, common, continuous random variables 246—266
Probability distributions, common, definition 232
Probability distributions, common, discrete random variables 232—246
Probability distributions, common, discrete uniform distribution 234—236
Probability distributions, common, introduction 232
Probability distributions, common, Monte Carlo simulation 266—272
Probability distributions, common, summary 272—274
Probability, a priori 182 215
Probability, additional rule for 187—189
Probability, approaches to estimating 182
Probability, binomial 240
Probability, conditional 184 185 186—187 191—192
Probability, definition 181
Probability, density function (pdf) 234 246 247 248
Probability, distributions see "Probability distributions common"
Probability, down transition 245
Probability, empirical 182
Probability, function 234
Probability, inconsistent 184
Probability, introduction 180
Probability, inverse see "Bayes' formula"
Probability, joint 185 209
Probability, marginal 184
Probability, mass function (pmf) 234
Probability, multiple rule for 185
Probability, objective 182
Probability, portfolio expected return and variance of return 202—211
Probability, posterior 213
Probability, principles of counting and 215—218
Probability, prior 212 213
Probability, profiting from inconsistent 183—184
Probability, properties of 181
Probability, stated as odds 182—183
Probability, subjective 182
Probability, summary 219—221
Probability, topics in 211—218
Probability, total probability rule 192 193—194
Probability, total probability rule for expected value 197
Probability, unconditional 184 185
Probability, up transition 245
Probability, value 334—335 407 447
Probit models 490 491—492
Pseudorandom numbers 268
Pure discount instruments 72
Qualitative dependent variables, models with 490—492
Quantiles 120—126
Quantiles in investment practice 124—126
Quantiles, analysis of variance and 455
Quantiles, commonly used, most 120—124
Quartiles 120 121 122—124
Quintiles 120 122—124
Random number generator 268 269
Random variable(s) 180
Random variable(s), Bernoulli 236—238
Random variable(s), binomial 236—246
Random variable(s), definition 232
Random variable(s), independence for 210
Random variable(s), standardizing 255
Random variable(s), uncorrelated 211
Random variable(s), upper and lowercase letters and 233
Random walks 490 541—545
RANGE 126—127
Ratio scales 90
Real risk-free interest rate 3
Regression analysis see "Linear regression" "Model "Multiple
Regression coefficients 395 443 538—540
Rejection point (critical value) for test statistic 330—331 333
Relative dispersion 139
Relative frequency 103
Relative frequency, cumulative 94
Relative frequency, definition 94
Reliability factors, basis of computing 303
Residual autocorrelations 530
Return distributions, kurtosis in 149—153
Return distributions, properties of 88
Return distributions, semivariance and 136
Return distributions, symmetry and skewness in 144—149
Risk premium test 327 332 333—334
Risk-adjusted net value added (RANVA) 449—451 453—454
Robust standard errors 467 468 472
Root mean squared error (RMSE) 537 566
Roy's safety-first criterion 257 258 260
Rule of 72 29
Safety-first rules 257—259
Sample statistics definition 89
Sample, covariance 379—381
Sample, definition 89
Sample, distribution of mean 291—295
Sample, excess kurtosis 150—153
Sample, mean 103 104—105 194 253 287
Sample, mean formula 104
Sample, populations and 89
Sample, random, simple 286—287
Sample, relative skewness 147
Sample, selection bias 308—309
Sample, size selection 303—305
Sample, skewness 147
Sample, standard deviation 133—135 253
Sample, variance 132 133—134
Sampling 285—322
Sampling, biases in investment research 310—311
Sampling, central limit theorem 286 292—295
Sampling, data-mining bias 306—308
Sampling, definition 286
Sampling, delistings selection bias 309
Sampling, distribution of sample mean 291—295
Sampling, distribution of statistics 287
Sampling, error and 286 287 291 303
Sampling, introduction 285—286
Sampling, look-ahead bias 309 311
Sampling, out-of-sample test 306
Sampling, plan 287
Sampling, point and interval estimates of population mean 295—305
Sampling, random sampling, simple 286—287
Sampling, reasons for 286
Sampling, selection bias 308—309 333
Sampling, stratified random sampling 288—289
Sampling, summary 311—313
Sampling, survivorship bias 308—309 310—311 333
Sampling, systematic 287
Sampling, time-period bias 310 311 333
Sampling, time-series and cross-sectional data 289—291
Scatter plots 376—377 378 379 383
Seasonality in models 555—558 567 568
Security Market Line (SML) 618
Selling short 184
Semideviation 135—136 137
Semilogarithmic scales 154
Semivariance 135 136 137
Serial correlation and regression errors 468—473 476
Serial correlation and regression errors, autoregressive model and detecting 529—532
Serial correlation and regression errors, consequences of 469
Serial correlation and regression errors, consistent standard errors 472
Serial correlation and regression errors, correcting for 472—473
Serial correlation and regression errors, Dubin — Watson statistic and 470—472 527
Serial correlation and regression errors, first-order 469
Serial correlation and regression errors, negative 469
Serial correlation and regression errors, positive 469
Serial correlation and regression errors, summary 476
Serial correlation and regression errors, testing for 470—472
Sharpe ratio 137 141—144
Sharpe ratio as risk-adjusted performance measure 72 126
Sharpe ratio, calculating 143—144 290
Sharpe ratio, confidence interval for population mean of, examples 300 302—303
Sharpe ratio, definition 289
Sharpe ratio, formula 141
Sharpe ratio, limitation 142
Ðåêëàìà