Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E. — Quantitative Methods For Investment Analysis
Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E. — Quantitative Methods For Investment Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Quantitative Methods For Investment Analysis

Àâòîðû: Richard A. DeFusco CFA, McLeavey D.W., Runkle D.E.

Àííîòàöèÿ:

As part of the CFA Institute Investment Series, the Second Edition of Quantitative Investment Analysis has been designed for a wide range of individuals, from graduate-level students focused on finance to practicing investment professionals. This globally relevant guide will help you understand quantitative methods and apply them to today's investment process.

In this latest edition, the distinguished team of Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle update information associated with this discipline; improve the presentation and coverage of several major areas, including regression, time series, and multifactor models; and introduce an even greater variety of investment-oriented examples—which reflect the changes currently taking place in the investment community. Throughout the text, special attention is paid to ensuring the even treatment of subject matter, consistency of mathematical notation, and continuity of topic coverage that is so critical to the learning process.
Valuable for self-study and general reference, this book provides clear, example-driven coverage of a wide range of quantitative methods. Topics discussed include:

* The time value of money
* Discounted cash flow applications
* Common probability distributions
* Sampling and estimation
* Hypothesis testing
* Correlation and regression
* Multiple regression and issues in regression analysis
* Time-series analysis
* Portfolio concepts

And to further enhance your understanding of the tools and techniques presented here,don't forget to pick up the Quantitative Investment Analysis Workbook, Second Edition—an essential guide containing learning outcomes and summary overview sections along with challenging problems and solutions.
With each author bringing his own unique experiences and perspectives to the table, the Second Edition of Quantitative Investment Analysis distills the knowledge, skills, and abilities you need to succeed in today's fast-paced financial environment. Filled with in-depth insights and practical advice, Quantitative Investment Analysis, Second Edition offers a comprehensive treatment of quantitative methods that combines best practices with solid theory.


ßçûê: en

Ðóáðèêà: Ýêîíîìèêà è ôèíàíñû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2

Ãîä èçäàíèÿ: 2007

Êîëè÷åñòâî ñòðàíèö: 721

Äîáàâëåíà â êàòàëîã: 11.03.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Fisher effect regression, heteroskedasticity and      465—467 468
Fisher effect regression, serial correlation and      469 471 473
Fisher effect regression, unit roots and      562
Foolish Four      307
Fractile      see "Quantiles"
Frequency distributions for annual return on S&P 500 (1926-2002)      95
Frequency distributions for monthly total return on S&P 500 (1926-2002)      97
Frequency distributions of holding pattern returns      92
Frequency distributions, construction example      98—99
Frequency distributions, construction procedure for      92—93
Frequency distributions, definition      91
Frequency distributions, summarizing data using      91—99
Frequency polygon      100
Full price      74
Fundamental betas definition      629
Fundamental factor models in current practice      649—652
Fundamental factor models, analyzing sources of return and      652
Fundamental factor models, definition      634
Fundamental factor models, equation      643
Fundamental factor models, example      649—651
Fundamental factor models, focus of      649
Fundamental factor models, structure      643—644
Fundamental factor models, types      651—652
Future value (FV) of annuity example      14
Future value (FV) of five-year ordinary annuity      13
Future value (FV) of series of cash flows      13—15
Future value (FV) of single cash flow      4—13
Future value (FV), applying examples      5—8
Future value (FV), compounding frequency effect on      11
Future value (FV), definition      4
Generalized autoregressive conditional heteroskedasticity (GARCH)      561—562
Generalized least squares      467
Geometric mean      115—119
Geometric mean, examples      117—118 119
Geometric mean, formula      115—116
Geometric mean, return formula      116—117
Geometric mean, using arithmetic mean and      153—155
Graphic presentation of data      99—103
Gross domestic product (GDP) definition      635
Growth rate, calculating      27—29
Hanson — White standard errors      472
Harmonic mean      119—200
Hedge fund      91 142
Heteroskedasticity as violation of regression assumptions      462—468 476
Heteroskedasticity, autoregressive conditional models      559—562
Heteroskedasticity, Breusch — Pagan test and      465—467
Heteroskedasticity, conditional      465 467 468 472 473
Heteroskedasticity, consequences of      463—465
Heteroskedasticity, consistent standard errors      468
Heteroskedasticity, correcting for      467—468
Heteroskedasticity, definition      462 559
Heteroskedasticity, generalized least squares      467
Heteroskedasticity, homoskedastic versus      462—463
Heteroskedasticity, robust standard errors      467 468
Heteroskedasticity, testing for      465—467
Heteroskedasticity, tests of asset pricing model and      464
Heteroskedasticity, unconditional      464
histogram      99—100 101 103
Histogram, definition      99
Histogram, examples      110 101
Historical simulation      271—272
Holding period return (HPR)      65
Holding period return (HPR), formula      91—92
Holding period return (HPR), frequency distribution of      92
Holding period yield (HPY)      74 76
Homoskedasticity      462—463 559
Hurdle rate      61
Hypothesis testing      323—374
Hypothesis testing, chi-square test      352 353 399
Hypothesis testing, collecting data and calculating test statistic      333
Hypothesis testing, confidence interval and      332 405 406
Hypothesis testing, definition      324
Hypothesis testing, differences between mean tests      342—346
Hypothesis testing, distributions for test statistics      328
Hypothesis testing, economic or investment decision making      334
hypothesis testing, errors in      329—330 333
Hypothesis testing, examples      337—339 340—342 343—344 345—346 349—350 352 354—356
Hypothesis testing, finite population correction factor      336
Hypothesis testing, formulations of hypotheses      326—327
Hypothesis testing, identifying appropriate test statistic and probability distribution      327—329
Hypothesis testing, introduction      324—325
Hypothesis testing, level of significance of test      329 330
Hypothesis testing, mean, concerning      335—350
Hypothesis testing, nonparametric inference      356—360
Hypothesis testing, one-sided      327
Hypothesis testing, one-tailed      327 330 456
Hypothesis testing, outcomes from testing null hypothesis      329
Hypothesis testing, p-value approach      334—335
Hypothesis testing, paired comparisons test      347
Hypothesis testing, pooled estimate      342
Hypothesis testing, power of test      330
Hypothesis testing, process of      325
Hypothesis testing, question addressed by      295 324
Hypothesis testing, regression model and      405—412 see
Hypothesis testing, rejecting null hypothesis      332
Hypothesis testing, rejection point (critical value) for test statistic      330—331 333 353—354
Hypothesis testing, single mean, tests concerning      335—342
Hypothesis testing, Spearman rank correlation      357—360
Hypothesis testing, specifying significance level      329—330
Hypothesis testing, stating decision rule      330—333
Hypothesis testing, stating the hypotheses      326—327
Hypothesis testing, statistical      325
Hypothesis testing, statistical decision making      333—334
Hypothesis testing, statistically significant result      330
Hypothesis testing, steps in      326—334
Hypothesis testing, t-test      335—336 339 342 3fLinear multiple
Hypothesis testing, test statistic of population mean      336
Hypothesis testing, two-sided      327
Hypothesis testing, two-tailed      327 392
Hypothesis testing, variance, concerning      351—356
Hypothesis testing, z-test alternative      339—340 341—342
Hypothesis, alternative      326 327 331 332 333 392
Hypothesis, definition      325
Hypothesis, null      326 327 328 329 330 331 333 334 392 455
In-sample forecast errors      536 537
Incremental cash flows      58
Independent events      189
Independent variable, linear regression with      395—398
Independent variable, multiple linear regression and      442 443 448
Independently and identically distributed (IID)      263
Indexing      288
Inflation premium      3
Information ratio (IR) definition      655
Interest rate(s)      see also "Compounding"
Interest rate(s), components      2—3
Interest rate(s), declining environment      197 198
Interest rate(s), definition      2
Interest rate(s), interpretation      2—3
Interest rate(s), nominal risk-free      3
Interest rate(s), quoted      9
Interest rate(s), real risk-free      3
Interest rate(s), stable environment      197 198
Interest rate(s), stated annual      9
Interest, simple      4
Internal rate of return (IRR), definition      60
Internal rate of return (IRR), hurdle rate and      61
Internal rate of return (IRR), interpreting      60
Internal rate of return (IRR), net present value and      58—65
Internal rate of return (IRR), net present value versus rule of      63—65
Internal rate of return (IRR), problems with rule      63—65
Internal rate of return (IRR), rule and      60—63
Interquartile range (IQR)      127
Interval definition      93
Interval scales      90
Investment and present and future value relationship, initial      5
Jarques — Bera (JB) statistical test of normality      153
Jensen's inequality      118
Joint probability function      209
Kolmogorov — Smirnov test      357
Kurtosis in return distributions      149—153
Kurtosis, calculating sample excess      151—153
Kurtosis, definition      149
Kurtosis, excess      150
Kurtosis, normal distribution and      252
Kurtosis, sample excess formula      150—151
Leptokurtic      149 150 151
Likelihoods      212
Linear association      377 379 381
Linear interpolation      121
Linear regression      395—418
Linear regression with one independent variable      395—398
Linear regression, assumptions of      395 398—401
Linear regression, coefficient of determination      403—405
Linear regression, confidence intervals and      405 406
Linear regression, cross-sectional data      395—396 418
Linear regression, data types      395
Linear regression, diagram of how it works      397
Linear regression, estimated or fitted parameters      396
Linear regression, examples      400—401 402—403 404—405 407—412 414—415 417—418
Linear regression, hypothesis testing      405—412
Linear regression, limitations      48
Linear regression, model assumptions      398—401
Linear regression, parameter instability      418
Linear regression, prediction intervals      416—418
Linear regression, problems and solutions      476
Linear regression, standard error of estimate      401—403
Linear regression, time series      see "Time-series analysis"
Linear regression, variance analysis with one independent variable      413—415
Linear trend models      518—521 529
Liquidity premium      3
Log-linear trend models      521—526 527 529
Logit models      490
Lognormal distribution      260—266
Lognormal distribution as continuous model      245
Lognormal distribution, asymmetric or skewed      240
Lognormal distribution, Black — Scholes — Merton option pricing model and      260
Lognormal distribution, expressions for mean and variance of      261
Lognormal distribution, observations about      260
Lognormal distribution, parameters      261
Longitudinal data      291
Look-ahead bias in sample selection      309 311
Macroeconomic factor models in current practice      644—649
Macroeconomic factor models, definition      633
Macroeconomic factor models, estimating      636
Macroeconomic factor models, examples      644—649 649—651
Macroeconomic factor models, expected return example in      644—645
Macroeconomic factor models, structure of      634—636
Macroeconomic factor models, surprise in      634—635
Market model, computing stock correlations using      627
Market model, estimates      625—629
Market model, regression      209
Market model, returns and      633
Market price premium      618
Markowitz decision rule      619—620
Maturity premium      3
Mean absolute deviation (MAD)      127—129
Mean absolute deviation (MAD), drawback      127
Mean absolute deviation (MAD), evaluating risk example      128—129
Mean absolute deviation (MAD), formula      127
Mean excess return      141
Mean reversion and time series      532—533
Mean squared error (MSE)      469
Mean versus average usage      104
Mean-variance analysis      141 589—623
Mean-variance analysis, asset allocation determination and      622—623
Mean-variance analysis, assumptions of      589—590
Mean-variance analysis, capital asset pricing model      see "Capital asset pricing model (CAPM)"
Mean-variance analysis, definition      589
Mean-variance analysis, determining minimum-variance frontier      602—605
Mean-variance analysis, diversification and portfolio size      605—609
Mean-variance analysis, estimating inputs for optimization of      624—629
Mean-variance analysis, examples      595—597 603—605 608—609 610—614 616—617 621—622 627 630—632
Mean-variance analysis, extension to three-asset case      599—602
Mean-variance analysis, historical estimates for      624—625
Mean-variance analysis, instability in minimum variance frontier      629—632
Mean-variance analysis, market model estimates: adjusted beta      628 629
Mean-variance analysis, market model estimates: historical beta      625—628
Mean-variance analysis, Markowitz decision rule      619—620
Mean-variance analysis, minimum-variance frontier      590—599
Mean-variance analysis, normal distribution and      257
Mean-variance analysis, portfolio choice rules      619—623
Mean-variance analysis, portfolio choice with risk-free asset      609—617
Mean-variance analysis, practical issues in      623—632
Mean-variance analysis, summary      668—670
Measurement scales      89—91
Measurement scales, identifying      90—91
Measurement scales, interval      90
Measurement scales, nominal      89
Measurement scales, ordinal      90
Measurement scales, ratio      90
Measures of location      103
Median and central tendency      108—110
Median, advantage and disadvantage of      108
Median, definition      108
Median, example for finding      108—109
Median, example of usage of      109—110
Mesokurtic      149 150
Mixed factor models      634
Modal interval(s)      111
Mode of central tendency      110—112
Mode, calculating      111—112
Mode, definition      110
Mode, number of      110
Model specification, regression      476—490
Model specification, regression, examples      478—479 480—483 483—485 486—487 488—489
Model specification, regression, misspecified functional form      478—486
Model specification, regression, pooling data and      485—486
Model specification, regression, principles      477
Model specification, regression, regressors correlated with errors      486—489
Model specification, regression, time-series misspecification      486—490
Modern Portfolio Theory (MPT)      257
Money market yields      72—77
Money-weighted rate of return      66—67
Monte Carlo simulation      232 266—272
Monte Carlo simulation, application examples      269—271
Monte Carlo simulation, asset allocation and      623
Monte Carlo simulation, Black — Scholes — Merton option pricing model versus      272
Monte Carlo simulation, central limit theorem and      293—294
Monte Carlo simulation, characteristic feature of      266
Monte Carlo simulation, historical simulation versus      271—272
Monte Carlo simulation, probability distributions for risk factors and      339
Monte Carlo simulation, steps in      267—268
Monte Carlo simulation, uses      266—267
Moving-average time-series models      548—553 567
Moving-average time-series models, autoregressive      558—559
Moving-average time-series models, autoregressive time series versus      551—553
Moving-average time-series models, forecasting      551—553
Moving-average time-series models, n-period, smoothing past values with      549—551
Moving-average time-series models, simple      551
Moving-average time-series models, weakness of      551
Multicollinearity      454 473—476
Multicollinearity, consequences of      473
Multicollinearity, correcting for      476
Multicollinearity, detecting      473—476
Multicollinearity, example      474—475
Multicollinearity, occurrence of      473
Multicollinearity, summary      476
Multifactor models in portfolio management      633—667
Multifactor models in portfolio management in current practice      644—652
Multifactor models in portfolio management, active management      633
Multifactor models in portfolio management, analyzing sources of returns      652—655
Multifactor models in portfolio management, analyzing sources of risk      655—663
Multifactor models in portfolio management, application examples      653—655 656 658—659 660—663 663—664 665—666
Multifactor models in portfolio management, applications      652—666
Multifactor models in portfolio management, arbitrage pricing theory      see "Arbitrage pricing theory"
Multifactor models in portfolio management, concluding remarks about      666—667
Multifactor models in portfolio management, creating tracking portfolio      664—666
Multifactor models in portfolio management, fundamental factor models      see "Fundamental factor models"
Multifactor models in portfolio management, importance of      633
Multifactor models in portfolio management, macroeconomic factor models      see "Macroeconomic factor models"
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå