Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Di Francesco P., Ginsparg P., Zinn-Justin J. — 2D Gravity and random matrices
Di Francesco P., Ginsparg P., Zinn-Justin J. — 2D Gravity and random matrices



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: 2D Gravity and random matrices

Авторы: Di Francesco P., Ginsparg P., Zinn-Justin J.

Аннотация:

We review recent progress in 2D gravity coupled to d < 1 conformal matter, based on a representation of discrete gravity in terms of random matrices. We discuss the saddle point approximation for these models, including a class of related O(n) matrix models. For d < 1 matter, the matrix problem can be completely solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively, in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representations of the canonical commutation relations in
terms of differential operators. In the case of pure gravity or discrete Ising-like matter, the sum over topologies is reduced to the solution of nonlinear differential equations (the Painleve equation in the pure gravity case) which can be shown to follow from an action principle. In the case of pure gravity and more generally all unitary models, the perturbation theory
is not Borel summable and therefore alone does not define a unique solution. In the non-Borel summable case, the matrix model does not define the sum over topologies beyond perturbation theory. We also review the computation of correlation functions directly in the continuum formulation of matter coupled to 2D gravity, and compare with the
matrix model results. Finally, we review the relation between matrix models and topological gravity, and as well the relation to intersection theory of the moduli space of punctured Riemann surfaces.


Язык: en

Рубрика: Физика/Квантовая теория поля/Квантовая гравитация/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 133

Добавлена в каталог: 16.08.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте