|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Martello S., Toth P. — Knapsack problems: algorithms and computer implementations |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Polytope, meaning of term 74
Probabilistic analysis 10
Probabilistic analysis, KP 56—57
Probabilistic analysis, SSP 126 128
Problems, AVIS 129
Problems, AVIS, computational experiments using 129
Problems, EVEN/ODD 128
Problems, EVEN/ODD, computational experiments using 129 133
Problems, TODD 128
Problems, TODD, computational experiments using 129 134
Procedures, 125—126
Procedures, , computational experiments using 131—134
Procedures, , example using 126 127
Procedures, 53—54
Procedures, , dynamic programming phase of 53 55
Procedures, , example using 55
Procedures, , greedy phase of 54 56
Procedures, , SSP solved using 125
Procedures, ADJUST 198—200
Procedures, ADJUST, example using 200
Procedures, BOUND AND BOUND 171
Procedures, BZ 60
Procedures, BZC 58—59
Procedures, CORE 63—64 72
Procedures, CRITICAL_ITEM 18
Procedures, CRITICAL_ITEM, BCMP solved using 155
Procedures, DP1 39
Procedures, DP1, compared with DP2 44
Procedures, DP1, example using 42
Procedures, DP2 41—42
Procedures, DP2, compared with DP1 44
Procedures, DP2, example using 42 44
Procedures, DP2, states of 42
Procedures, DPS 109
Procedures, example using 83—84
Procedures, GREEDY 28—29
Procedures, GREEDY, SSP solved using 117
Procedures, GREEDYB 86—87
Procedures, GREEDYB, computational experiments using 89—91
Procedures, GREEDYS 179
Procedures, GREEDYS, use in MTHM 180 181
Procedures, GREEDYU 95
Procedures, GREEDYUM 141
Procedures, GREEDYUM, BCMP solved using 155
Procedures, GREEDYUM, example using 141
Procedures, GS 50 118
Procedures, H 59
Procedures, HS 30—31
Procedures, HS, decision-tree of 33
Procedures, HS, example using 32
Procedures, IKR 46
Procedures, IKR, example using 46—47
Procedures, IKRM 176
Procedures, IKRM, computational experiments using 183 184
Procedures, IKRM, time complexity of 177
Procedures, J(k) 120 122
Procedures, J(k), compared with procedure MTTS (K) 122—123
Procedures, J(k), computational experiments using 131—135
Procedures, J(k), example using 121
Procedures, L2 231—232
Procedures, L2, computational experiments using 241—244
Procedures, L2, example using 236
Procedures, L2, main variables in 231
Procedures, L2, worst-case performance ratio of 232—233
Procedures, L3 235—236
Procedures, L3, computational experiments using 241—244
Procedures, L3, example using 236 240
Procedures, LISTS 110—111
Procedures, LISTS, example using 111
Procedures, LOWER 173
Procedures, MNT 144—145
Procedures, MNT, example using 145
Procedures, MT1 34—36
Procedures, MT1' 64
Procedures, MT1, computational experiments using 69 70
Procedures, MT1, decision-tree of 37
Procedures, MT1, example using 36
Procedures, MT1, Fortran implementation of 247 248—249
Procedures, MT1R 247 249—251
Procedures, MT2 66—67
Procedures, MT2, computational experiments using 70 71
Procedures, MT2, Fortran implementation of 247 251—252
Procedures, MT2, heuristic version of 72
Procedures, MTC1 147—148
Procedures, MTC1, computational experiments using 151—153
Procedures, MTC1, decision-tree for 149
Procedures, MTC1, example using 149
Procedures, MTC2 150
Procedures, MTC2, computational experiments using 152
Procedures, MTC2, Fortran implementation of 247 258—259
Procedures, MTCB 155
Procedures, MTCB, computational experiments using 156
Procedures, MTCB, Fortran implementation of 247 259—261
Procedures, MTGS 118 121
Procedures, MTGSM 123—124
Procedures, MTGSM, example using 124
Procedures, MTHG 206—207
Procedures, MTHG, computational experiments using 219—220
Procedures, MTHG, example using 208
Procedures, MTHG, Fortran implementation of 247 268—270
Procedures, MTHM 180—181
Procedures, MTHM, computational experiments using 185—187
Procedures, MTHM, example using 182
Procedures, MTHM, Fortran implementation of 247 263—265
Procedures, MTM 173—174
Procedures, MTM, computational experiments using 183—186
Procedures, MTM, decision-tree for 175
Procedures, MTM, example using 175
Procedures, MTM, Fortran implementation of 247 261—263
Procedures, MTM, modified version of 176
Procedures, MTR 48—49
Procedures, MTR' 64—65
Procedures, MTR, computational experiments using 69
Procedures, MTR, example using 49
Procedures, MTRG1 209—210
Procedures, MTRG1, decision-tree when used 212
Procedures, MTRG1, example using 211—213
Procedures, MTRG2 210—211
Procedures, MTRP 234
Procedures, MTRP, example using 236 240
Procedures, MTRP, time complexity of 237
Procedures, MTS 113—114
Procedures, MTS, decision-tree for 115
Procedures, MTS, example using 115
Procedures, MTSL 116—117
Procedures, MTSL, computational experiments using 129—130
Procedures, MTSL, Fortran implementation of 247 256—257
Procedures, MTSS(k) 121—122
Procedures, MTSS(k), compared with procedure J(k) 122—123
Procedures, MTSS(k), computational experiments using 131—136
Procedures, MTSS(k), example using 123
Procedures, MTSS(k), worst-case performance ratio of 122
Procedures, MTU1 96—97
Procedures, MTU1, computational experiments using 103
Procedures, MTU1, decision-tree for 99
Procedures, MTU1, example using 98
Procedures, MTU2 100
Procedures, MTU2, computational experiments using 103
Procedures, MTU2, decision-tree for 102
Procedures, MTU2, example using 101
Procedures, MTU2, Fortran implementation of 247 254—255
Procedures, R 59
Procedures, REC1 38—39
Procedures, REC2 40—41
Procedures, REC2, dynamic programming algorithm using 41—42
Procedures, REC2, example using 44
| Procedures, RECS 108
Procedures, S(k) 51
Procedures, S(k), example using 52
Procedures, TB01 83
Procedures, UPPER 172—173
Pseudo-polynomial algorithm 7
Pseudo-polynomial transformation 8
Puech, C. 126 275
Pulleyblank, W.R. 74 281
Rao, M.R. 76 191 277 278
REC1 procedure 38—39
REC2 procedure 40—41
REC2 procedure, dynamic programming algorithm using 41—42
REC2 procedure, example using 44
Recognition problem 6
RECS procedure 108
Reduction algorithms, BPP solution involving 233—237
Reduction algorithms, GAP solution involving 209—213
Reduction algorithms, KP solution involving 45—50
Reduction algorithms, MKP solution involving 176—177
Reduction procedures, Balas — Zemel method use of 59
Reduction procedures, first used 14
References listed 275
Relaxations 11 see "Lagrangian "Surrogate
Relaxations, BCMP 153—154
Relaxations, BPP 224—227
Relaxations, GAP 192—204
Relaxations, KP 16—20
Relaxations, MKP 158—165
Rinnooy Kan, A.H.G. 10 50 57 279 280 281
Ross — Soland algorithm, GAP computational experiments using 214—218
Ross — Soland bound 193 197 201
Ross — Soland bound, computational experiments using 72—73
Ross, G.T. 30 163 192 193 197 204 213 218 275 281
Roveda, C. 191 276
Ryder, B.F. 248 281
S(k) algorithm 51 see
S(k) algorithm, examples using 52
Sahni polynomial-time approximation scheme 51 53 56
Sahni, S. 10 29 32 39 43 50 68 71 121 278 281
Salkin, H.M. 5 281
Schreck, H. 128 281
Schrijver, A. 5 74 281
Sequential lifting procedure 76
Shetty, C.M. 88 275
Simultaneous lifting procedure 76
Single knapsack problems see "Bounded Change-Making Problem" "Bounded "Change-Making "Multiple-Choice "Subset-Sum "Unbounded "Unbounded
Sinha, P. 80 275 281
Soland, R.M. 163 192 193 197 204 213 218 281
Spielberg, K. 30 278
Srinivasan, V. 191 281
States, meaning of term 38
States, procedure DP2 42
Steiglitz, K. 5 281
Stickstacking Problem 105 see
Stougie, L. 57 280
Subset-Sum Problem (SSP) 3 105—136
Subset-Sum Problem (SSP), approximate algorithms used 117—128
Subset-Sum Problem (SSP), computational experiments for 130—136
Subset-Sum Problem (SSP), computational experiments for solution of 128—136
Subset-Sum Problem (SSP), core problem of 116
Subset-Sum Problem (SSP), definition of 105
Subset-Sum Problem (SSP), dynamic programming used 106—109
Subset-Sum Problem (SSP), exact algorithms used 106—117
Subset-Sum Problem (SSP), exact algorithms used, computational experiments for 129—130
Subset-Sum Problem (SSP), Fortran-coded algorithm used 247 256—257
Subset-Sum Problem (SSP), fully polynomial-time approximation schemes used 125—126
Subset-Sum Problem (SSP), greedy algorithm used 117—119
Subset-Sum Problem (SSP), hybrid algorithm used 109—116
Subset-Sum Problem (SSP), large-size problems solved 116—117
Subset-Sum Problem (SSP), NP-hardness of 6
Subset-Sum Problem (SSP), polynomial-time approximation schemes used 120—125
Subset-Sum Problem (SSP), polynomial-time approximation schemes used, computational experiments involving 131—136
Subset-Sum Problem (SSP), probabilistic result for 126 128
Subset-Sum Problem (SSP), recursive formulae for 7
Suhl, U. 32 281
Surrogate relaxations 11
Surrogate relaxations, BPP 225—226
Surrogate relaxations, MKP 158—162
Syslo, M.M. 5 32 281
Szkatula, K. 57 281
Taha, H.A. 5 281
TB01 algorithm 83
TB01 algorithm, example using 83—84
Terminology 2—5
Thompson, G.L. 191 281
Tien, B.N. 142 145 281
Tinhofer, G. 128 281
TODD problem 128 129 133
Todd, M. 128 281
Toth dynamic programming algorithm 44
Toth dynamic programming algorithm, computational experiments using 69
Toth, P. 5 14 20 22 24 32 36 38 39 44 45 48 60 61 68 85 88 91 93 96 98 100 101 107 109 116 118 119 121 122 131 135 139 145 146 149 154 159 162 168 169 170 172 175 179 180 182 184 185 191 195 204 206 209 212 213 218 228 233 237 248 261 263 276 277 279 280 281
Tree-search, combined with dynamic programming to solve SSP 109—116
Trotter, L.E. 76 280
Trotter, L.E., Jr. 95 142 143 279
Ullman, J.D. 10 15 18 223 233 275 278
Ullmann, Z. 88 281
Unbounded Change-Making Problem 4 see
Unbounded Change-Making Problem, Fortran-coded algorithms used 247 258—259
Unbounded Equality Constrained Min-Knapsack Problem (UEMK) 141
Unbounded Knapsack Problem (UKP) 3 91—103
Unbounded Knapsack Problem (UKP), approximate algorithms used 93—95
Unbounded Knapsack Problem (UKP), computational experiments for solution of 102—103
Unbounded Knapsack Problem (UKP), core problem of 98
Unbounded Knapsack Problem (UKP), definition of 91—92
Unbounded Knapsack Problem (UKP), exact algorithms used 95—98
Unbounded Knapsack Problem (UKP), Fortran-coded algorithm used 247 254—255
Unbounded Knapsack Problem (UKP), large-size problems 98 100—102
Unbounded Knapsack Problem (UKP), minimization form of, UEMK containing 141
Unbounded Knapsack Problem (UKP), upper bounds of 92—94
Upper bounds 11
Upper bounds, BKP 84—86
Upper bounds, GAP 192—204
Upper bounds, KP 16—20
Upper bounds, MKP, techniques to obtain 158—165
Upper bounds, MKP, worst-case performance of 165—166
Upper bounds, UKP 92—94
UPPER procedure 172—173
Value Independent Knapsack Problem 105 see
Van Wassenhove, L.N. 197 206 213 218 219 277
Variable splitting method, GAP relaxed by 201—204
Veliev, G.P. 30 282
Vercellis, C. 57 279 280
Verebriusova, A. 107 282
Villela, P.R.C. 22 282
Walker, J. 80 276
Walukiewicz, S. 5 23 24 26 80 276
Weingartner, H.M. 282
Wolsey, L.A. 5 74 75 76 281 282
Wong, C.K. 92 278
Worst-case analysis 9—10
Worst-case performance ratio, BPP algorithms 222
Worst-case performance ratio, BPP lower bounds 224 228 232
Worst-case performance ratio, definition of 9
Worst-case performance ratio, L2 algorithm 232—233
Worst-case performance ratio, MKP upper bounds 165—166
Worst-case performance ratio, MTSS(k) algorithm 122
Worst-case relative error 10
Worst-Fit Decreasing (WFD) algorithm 238
Wright algorithm 146
Wright algorithm, computational experiments using 151
Wright, J.W. 146 151 282
XYGAP 201
Zemel, E. 14 17 47 57 58 59 60 62 68 76 77 80 275 278 282
Zoltners algorithm 60
Zoltners, A.A. 32 60 80 275 281 282
|
|
|
Ðåêëàìà |
|
|
|