|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Martello S., Toth P. — Knapsack problems: algorithms and computer implementations |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Generalized Assignment Problem (GAP), reduction algorithms used 209—213
Generalized Assignment Problem (GAP), relaxation of capacity constraints for 192—195
Generalized Assignment Problem (GAP), relaxation of semi-assignment constraints for 195—197
Generalized Assignment Problem (GAP), relaxations of 192—204
Generalized Assignment Problem (GAP), upper bounds of 192—204
Gens — Levner algorithm see " algorithm"
Gens, G.V. 56 125 126 131 277 279
Geoffrion, A. 163 277
Gill, A. 142 143 145 151 276
Gilmore, P.C. 14 88 95 96 146 277
Glossary 272
Glover, F. 80 81 158 277
Goldberg, A.V. 57 59 277
Gomory, R.E. 14 88 95 96 146 277
Gonzalez, T. 10 281
Gottlieb, E.S. 76 191 277 278
Graham, R.L. 10 223 233 278
Greedy algorithm 28—29
Greedy algorithms 28
Greedy algorithms, BCMP solved using 155
Greedy algorithms, classes of knapsack problems solved by 142—145
Greedy algorithms, CMP solved using 140—142
Greedy algorithms, CMP solved using, computational experiments involving 151
Greedy algorithms, KP solved using 27—29
Greedy algorithms, MKP solved using 166—167
Greedy algorithms, SSP solved using 117—119
GREEDYB algorithm 86—87
GREEDYB algorithm, computational experiments using 89—91
GREEDYS algorithm 179
GREEDYS algorithm, use in MTHM 180 181
GREEDYU algorithm 95
GREEDYUM algorithm 141
GREEDYUM algorithm, BCMP solved using 155
GREEDYUM algorithm, example using 141
Greenberg, H. 29 88 96 278
Groetschel, M. 74 275
GS algorithm 118 50
Guignard, M.M. 30 201 278
Hall, A.D. 248 281
Hammer, P.L. 47 75 276 278
Hartvigsen, D. 77 278
Hegerich, R.L. 29 88 278
Heuristic procedures used Balas — Zemel algorithm for KP 59
Heuristic procedures used Martello — Toth algorithm for GAP 206—208 268—270
Heuristic procedures used Martello — Toth algorithm for MKP 180—182 263—265
Hirschberg, D.S. 92 278
Hopcroft, J.E. 15 18 223 275
Horowitz — Sahni branch-and-bound algorithm 30—32
Horowitz — Sahni branch-and-bound algorithm, compared with Martello — Toth algorithm 32—34
Horowitz — Sahni branch-and-bound algorithm, computational experiments using 69
Horowitz — Sahni branch-and-bound algorithm, notations used 30
Horowitz — Sahni dynamic programming algorithm 43
Horowitz — Sahni dynamic programming algorithm, example using 43
Horowitz — Sahni dynamic programming algorithm, states of 43
Horowitz, E. 29 32 39 43 68 278
HP 9000/840 computer, BKP experiments run on 89—91
HP 9000/840 computer, BPP experiments run on 240—244
HP 9000/840 computer, CMP experiments run on 152 156
HP 9000/840 computer, GAP experiments run on 214—220
HP 9000/840 computer, KP experiments run on 71—73
HP 9000/840 computer, MKP experiments run on 185 186
HP 9000/840 computer, SSP experiments run on 130
HP 9000/840 computer, UKP experiments run on 103
HS algorithm 30—31
HS algorithm, decision-tree of 33
HS algorithm, example using 32
Hu, T.C. 5 95 96 142 144 145 278 281
Hudson, P.D. 22 278
Hung — Fisk branch-and-bound algorithms, branching strategy for 168
Hung — Fisk branch-and-bound algorithms, computational experiments using 183 184
Hung — Fisk branch-and-bound algorithms, MKP solved using 168
Hung, M.S. 163 168 179 184 185 237 277 278
Ibarra — Kim polynomial-time approximate algorithm 53 see
Ibarra, O.H. 14 53 54 56 95 125 278
IBM-7094 computer, BKP solved on 88
IKR algorithm 46
IKR algorithm, compared with Martello — Toth algorithm 48
IKR algorithm, example using 46—47
IKR algorithm, time complexity of 47
IKRM algorithm 176
IKRM algorithm, computational experiments using 183 184
IKRM algorithm, time complexity of 177
Ingargiola — Korsh algorithm, BKP solved using 89—90
Ingargiola — Korsh algorithm, computational experiments using 89—90
Ingargiola — Korsh reduction algorithms 45—46 176 see "IKRM
Ingargiola, G.P. 14 45 88 91 176 184 278
Integer linear programming problem 13
Investments, knapsack problem solution for 1
J(k) algorithm 120 122
J(k) algorithm, compared with procedure MTSS(K) 122—123
J(k) algorithm, computational experiments using 131—135
J(k) algorithm, example using 121
Jaikumar, R. 197 206 213 218 219 277
Jeroslow, R. 75 275
Joernsten, K. 201 203 206 218 278
Johnson algorithm see "J(k) algorithm"
Johnson, D.S. 6 8 10 14 120 131 177 178 222 223 233 276 277 278
Johnson, E.L. 13 75 276 278
Johnson, S.C. 145 278
Kannan, R. 92 279
Kaplan, S. 279
Karp, R.M. 6 10 50 279
Kayal, N. 80 276
Kernighan, B.W. 145 278
Kim, C.E. 14 53 54 56 95 125 278
Kim, S. 201 278
Klastorin, T.D. 209 279
Klingman, D. 80 277
Knapsack polytope 74—77
Knapsack problems, literature reviews on 5
Knapsack problems, meaning of term 1—2
Knapsack problems, terminology used 2—5
Knuth, D.E. 107 279
Kolesar, P.J. 14 29 279
Korsh, J.F. 14 45 88 91 145 176 184 276 278
Kowalik, J.S. 5 32 281
Kuhn, N.W. 191 279
Kung, D.S. 80 275
L1 lower bound (for BPP) 225—228
L1 lower bound (for BPP), computational experiments using 241—244
L2 algorithm 231—232
L2 algorithm, example using 236
L2 algorithm, main variables in 231
L2 algorithm, worst-case performance ratio of 232—233
L3 algorithm 235—236
L3 algorithm, computational experiments using 241—244
L3 algorithm, example using 236 240
Lagarias, J.C. 126 279
Lageweg, B.J. 30 279
Lagrangian relaxations 11
Lagrangian relaxations, bounds from 23—24
Lagrangian relaxations, BPP 226—227
Lagrangian relaxations, GAP 193—194
Lagrangian relaxations, KP 23—24
Lagrangian relaxations, MKP 162—165
Large-size CMP, algorithm for 149—151
Large-size KP, algorithms for 57—67
Large-size SSP, algorithm for 116—117
Large-size UKP, algorithm for 98 100—102
Lauriere, M. 30 48 279
Lawler (polynomial-time approximation) scheme 125 126
Lawler (polynomial-time approximation) scheme, computational experiments using 131—134
Lawler, E.L. 56 95 125 126 131 191 279
LBFD algorithm, BPP lower bound using 233
LBFD algorithm, computational experiments using 241—244
LEGAP 190—191
Lenard, M.L. 95 144 278
Lenstra, J.K. 10 30 50 279
Levner, E.V. 56 125 126 131 277 279
Libura, M. 57 281
| Linear Min-Sum Assignment Problem 191
Linear programming relaxation, KP 16—17
LISTS algorithm 110—111
LISTS algorithm, example using 111
Lower bounds 9
Lower bounds, BCMP 154
Lower bounds, BPP 224—233
Lower bounds, CMP 138—140
Lower bounds, ZOLP 171
LOWER procedure 173
Lueker, G.S. 56 92 137 279
Maculan, N. 20 279
Magazine, M.J. 56 95 142 143 279
Mamedov, K.Sh. 30 282
Marchetti-Spaccamela, A. 57 59 277 279
Martello — Toth algorithms, GAP solved using 204—206 212
Martello — Toth algorithms, GAP solved using, computational experiments for 214—218
Martello — Toth bound 195 197
Martello — Toth branch-and-bound algorithm 32—36
Martello — Toth branch-and-bound algorithm, branching strategy for 169
Martello — Toth branch-and-bound algorithm, compared with Horowitz — Sahni algorithm 32—34
Martello — Toth branch-and-bound algorithm, computational experiments using 183 184
Martello — Toth branch-and-bound algorithm, Fortran implementation of 248
Martello — Toth branch-and-bound algorithm, MKP solved using 168—170
Martello — Toth exact algorithm 61—67
Martello — Toth polynomial-time algorithm, Fortran implementation of 263—265
Martello — Toth polynomial-time algorithm, MKP solved using 179—182
Martello — Toth reduction algorithm 48
Martello — Toth reduction algorithm, compared with Ingargiola — Korsh algorithm 48
Martello, S. 5 14 20 22 24 32 36 48 60 61 68 85 88 91 93 96 98 100 101 102 107 109 116 118 119 121 122 131 135 139 145 146 149 154 159 162 168 169 170 172 175 176 179 180 182 184 185 191 195 204 206 209 212 213 218 228 233 237 248 261 263 276 277 279 280
Mazzola, J.B. 209 280
McDiarmid, C.J.H. 10 50 279
Meanti, M. 57 280
MINGAP 190
Mingozzi, A. 168 276
Minimal covers, meaning of term 75
MNT algorithm 144—145
MNT algorithm, example using 145
MT1 algorithm 34—36
MT1 algorithm, computational experiments using 69 70
MT1 algorithm, decision-tree of 37
MT1 algorithm, example using 36
MT1 algorithm, Fortran implementation of 247 248—249
MT1' algorithm 64
MT1R algorithm 247 249—251
MT2 algorithm 66—67
MT2 algorithm, computational experiments using 70 71
MT2 algorithm, Fortran implementation of 247 251—252
MT2 algorithm, heuristic version of 72
MTB2 algorithm, computational experiments using 89—91
MTB2 algorithm, Fortran implementation of 247 252—254
MTC1 algorithm 147—148
MTC1 algorithm, computational experiments using 151—153
MTC1 algorithm, decision-tree for 149
MTC1 algorithm, example using 149
MTC2 algorithm 150
MTC2 algorithm, computational experiments using 152
MTC2 algorithm, Fortran implementation of 247 258—259
MTCB algorithm 155
MTCB algorithm, computational experiments using 156
MTCB algorithm, Fortran implementation of 247 259—261
MTG algorithm, computational experiments using 214—217
MTG algorithm, development of 205—206
MTG algorithm, Fortran implementation of 247 265—268
MTGS algorithm 118 121
MTGSM algorithm 123—124
MTGSM algorithm, example using 124
MTHG algorithm 206—207
MTHG algorithm, computational experiments using 219—220
MTHG algorithm, example using 208
MTHG algorithm, Fortran implementation of 247 268—270
MTHM algorithm 180—181
MTHM algorithm, computational experiments using 185—187
MTHM algorithm, example using 182
MTHM algorithm, Fortran implementation of 247 263—265
MTM algorithm 173—174
MTM algorithm, computational experiments using 183—186
MTM algorithm, decision-tree for 175
MTM algorithm, example using 175
MTM algorithm, Fortran implementation of 247 261—263
MTM algorithm, modified version of 176
MTP algorithm 237—238
MTP algorithm, computational experiments using 244—245
MTP algorithm, decision-tree produced by 239
MTP algorithm, example using 238—240
MTP algorithm, Fortran implementation of 247 270—272
MTR algorithm 48—49
MTR algorithm, computational experiments using 69
MTR algorithm, example using 49
MTR' algorithm 64—65
MTRG1 algorithm 209—210
MTRG1 algorithm, decision-tree when used 212
MTRG1 algorithm, example using 211—213
MTRP algorithm 234
MTRP algorithm, example using 236 240
MTRP algorithm, time complexity of 237
MTS algorithm 113—114
MTS algorithm, decision-tree for 115
MTS algorithm, example using 115
MTSL algorithm 116—117
MTSL algorithm, computational experiments using 129—130
MTSL algorithm, Fortran implementation of 129—130
MTSS(k) algorithm 121—122
MTSS(k) algorithm, compared with procedure J(k) 122—123
MTSS(k) algorithm, computational experiments using 131—136
MTSS(k) algorithm, example using 123
MTSS(k) algorithm, worst-case performance ratio of 122
MTU1 algorithm 96—97
MTU1 algorithm, computational experiments using 103
MTU1 algorithm, decision-tree for 99
MTU1 algorithm, example using 98
MTU2 algorithm 100
MTU2 algorithm, computational experiments using 103
MTU2 algorithm, decision-tree for 102
MTU2 algorithm, example using 101
MTU2 algorithm, Fortran implementation of 247 254—255
Mueller-Merbach bound 23
Mueller-Merbach, H. 23 280
Multiple knapsack problems see also "Bin-Packing Problem (BPP)" "Generalized "0-1
Multiple-Choice Knapsack Problem (MCKP) 3 77—80
Multiplier adjustment method, GAP upper bound determined by 197—201
Murphy, R.A. 47 280
Naesberg, M. 201 203 206 218 278
Nauss exact algorithm, computational experiment using 69
Nauss, R. 47 275
Nauss, R.M. 32 68 80 280
Neebe, A. 168 280
Nemhauser, G.L. 5 74 76 88 96 277 280 281
Nemhauser, J.L. 95 142 143 279
Ness, D.N. 282
Next-Fit (NF) algorithm 222 224
Next-Fit Decreasing (NFD) algorithm 223—224
NP-hard problems 6—9
Odlyzko, A.M. 126 279
Oehlandt, K. 88 275
Oguz, O. 56 279
One-point theorem 144
Padberg, M.W. 13 76 276 281
Papadimitriou, C.H. 5 281
Parker, R.G. 88 275
Partial enumeration, KP bounds from 24
Peled, U.N. 75 278
Performance of algorithms 9
Plateau, G. 22 30 36 47 48 60 68 116 276 277 281
Polynomial-time approximation schemes 10 14
Polynomial-time approximation schemes, KP solved using 50—53
Polynomial-time approximation schemes, KP solved using, computational experiments 71—74
Polynomial-time approximation schemes, MKP solved using 179—182
Polynomial-time approximation schemes, SSP solved using 120—125
Polynomial-time approximation schemes, SSP solved using, computational experiments 131—136
|
|
|
Ðåêëàìà |
|
|
|