Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Amir D. — Best simultaneous approximation (chebyshev centers)
Amir D. — Best simultaneous approximation (chebyshev centers)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Best simultaneous approximation (chebyshev centers)

Автор: Amir D.

Аннотация:

The problem of approximating simultaneously a set of data in a given metric space by a single element of an approximating family arises naturally in many practical problems. A common procedure is to choose the "best" approximant by a least squares principle, which has the advantages of existence, uniqueness, stability and easy coraputability. However, in many cases the least deviation principle makes more sense. Geometrically, this amounts to covering the given data set by a ball of minimal radius among those centered at points of the approximating family. The theory of best simultaneous approximants in this sense, called also Chebyshev centers, was initiated by A. L. Garkavi about twenty years ago. It has drawn more attention in the last decade, but is still in a developing stage. In this short survey I try to describe the main known results and to point at some of the connections between the theory of Chebyshev centers and other problems of Approximation Theory and of Banach Space Theory.


Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1984

Количество страниц: 19

Добавлена в каталог: 02.02.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте