|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Akbar-Zadeh H. — Initiation To Global Finslerian Geometry |
|
|
Предметный указатель |
Absolute, differential 6 11 25 26 27 30 54 55 77
abstract 1 23 48 89 122 143 191 222
Affine, vector fields 48
Algebra 5 6 24 26 48—9 52 61—2 76 78 79 81—3 86 88
Almost, Euclidean connections 44
Berwald, connections 46 71 90 92 95 97 102 104 136 143 146 150 151 153—4 156 157 158 161 162 163 164 173 179 186 187 198 201 205 207 209 223 226 227 234—5
Berwald, manifolds 122 132 135
Bianchi, identities 20 22—3 42 92 93 122 123 124 128 133 151 152 153 158 198 230
Busemann 164
Cartan 23 46 47 122 123
CASE 69 99 191 229
Coframes 15 17 51 55 66
Coherence 7 8 13 25 26
Compact, Finslerian manifolds 48 70 74 75 89 95 97 109 117 121 122 123 125 127 138 141 175 197 211 229 234 241
Complete, manifolds 167 169 171 173
Conformal, transformations 222 228 229 232 234 238 240
Conformal, vector fields 222 230 234 242
Connected 3 48 49 69 78 79 80 81 86—8 89 95 143 172 173 191 202 211 221 222 238
Connections 5 6 23 24 30 32 40 44 46 48 55 98 101 102 177 179 180 182
coordinates 3—4 16 18 32 34 35 37 40 84 128 143 163 164 178 198 205 216
Covariant, derivation 1 12 19 21 42 44 70 71 74 75 76 80 90 101 131 145 146 148 152 174 176 179 184 187 195 199 201 223 234
Covariant, derivative 11 20 40 48 66 77 78 84 86 87 88 102 103 122 132 165 174 175 204 205
Curvature, infinitesimal conformal 89 142 222 229 232 238 240
Curvature, projective transformations 197
Curvature, tensor 13 14 16 17 20 21 23 27 40 41 45 78 80 89 92 95 102 122 123 133 136 137 138 140 142 143 146 149 150 151 152—3 156 157 159 163 164 167 168 173 174 189 198 200 201 205 207 235 237
Curvature, transformations 197 229
Degree 5 10 23 27—30 33 34 35 46 51 96 99 108 112 114 134 144 147 150 154 163 202 206 210 225 235 242
Differentiable, fibre bundles 1 2
Differentiable, functions 89 93 101 118
Differentiable, manifolds 3 35
Divergence, formulas 48 64 66 67 71 124 125
Einstein, generalized Einstein manifolds 89 98 105 109 112 113 191
Einstein, manifolds 122 138 141 142
equation 4 22 27 31 44 46 81 95 147 149 161—2 163 170 171 172 173 174 192 193 194 195 200 212 215 220
Exterior, differential forms 9
Fibre bundle, linear frames 5 135
Fibre bundle, V(M) and W(M) 2—4 5 9 10 12 21 23 28 74 89 98 122 135 154 182 197 210 211 217
Finslerian, connection 36 40 42 45 67 69 135 145 156
Finslerian, curvature tensors 23 40 102 122 136 137 138 143 149 151 156—7 168 174 198 237
Finslerian, geometry 23 46 175 215
Finslerian, manifolds 23 33 84 109 122 125 135 138 143 144 151 153 157
Finslerian, submanifolds 125 143 175 182 186 188
FORM 4 9
frames 2 32
Geodesic 135 181
Geodesic, homogeneous 5 23 35 46 49 99 108 112 114 134 144 147 150 154 163 192 202 206 225 235 242
Homeomorphie to the sphere 218
identities 1 18 20 22 23 42 122 152 153
Infinitesimal, transformation 48 49 51 52 53 56 61 67 68 75 76 77 78 79 81 83 84 85 86 192 194 202 215 222 227 241
| Isometries 48 67 69 70 86 88 201 211 238
Isotropic, case 151—3 155 167 168 189
Isotropic, Finslerian manifolds 143 144 154 157 162 164 165
Isotropic, manifolds 127 143 150 164
Landsberg, manifolds 122 123 125 129 131 132 135 174 202 205
Laplace, operator 89 90 93 95 96 97 222 236 240 241
Lemmas 81 90 92 93 98 99 103 104 112 113 123 130 131 194 195 197 225 227 229 230 236
Length 23—4 27 33—4 44 162 170 171 211—12 214—15 216—17 218—20
Lichnerowicz 89
Lie, algebra 5—6 24 26 48—9 52 61—2 76 78 79 81—2 83 86 88
Lie, derivative 48 49 51—2 53 56 57 58—9 61—3 67—8 77—8 84 192 194 210 213 217 222 227 235
Linear, connection 1 5 6 10 12 13 14 16 17—18 20 21 23 25 26 36 37 39 40 42 48 54 56 58 61 75 76 77 84
Linear, connection of directions 6 11 17 48
Linear, connection of vectors 1 5 6 7 8 9 11 13 48
Linear, element 1
Manifolds 23 33 84 89 95 98 105 122 123 125 127 129 131 132 135 138 143 144 150 153 157 162 164 167 169 171 173 227
Map, canonical 2 9 10 17 18
Map, induced 2
Minima, fibration 123 125 127 129 130
Minkowskian, manifolds 162
open 3 163
Orthonormal, frames 23 24 25 26—7 32 99
Plane axioms, Finslerian geometry 175 182
Positive definite 34 144 238 240 241
Projective, transformation 191 193 194 196 197 199 201 202 204 205 206 208 221
Projective, vector fields 191 197 201 214
Ricci, curvature 70 157 204 205 214 222
Ricci, directional curvature 103 109 143 157 191 210 211 212 214 215 221
Ricci, identities 1 18 20
Ricci, tensor 48 74 75 95 103 104 124 141 151 152 198 210 237
Riemann 167
Riemann, scalar curvature 89 101 138 142 143 150 155 161 162 172 173 222 234 236 238
Schur, generalized Schur theorem 143 153
Schur, theorem 186 188
Second variational, integral I(gt) 89 105 109 110 112 117 121 138 141 142
Semi-closed 222 239 240 241 242
Simply connected, compact Finslerian manifolds 95 143 173 191 221
Steenrod 2
Tensorial 5 14 35 51 52 53 58
Tensors, affine 4
Tensors, curvature 13 14 40 151
Tensors, large sense 4 5 11 19 48 51 53 55 56 57 62 77
Tensors, restricted sense 4 5 23
Theorems 18 23 26 36 39 45 47 67 68 69 70 74 76 77 79 81 83 86 88 89 95 109 112 117 121 125 127 129 135 137 141 142 153 156 157 162 163 164 165 171 173 175 182 186 188 190 199 205 209 211 212 214 218 221 229 234 238
Torsion 1 13—14 16—17 20 21 23 31 32 37 40 45 48 54 55 84 85 93 102 112 118—19 122—3 138 141 143 145 148 168 173 174 175 176 177 191 200 202 215 222—3 226 227 230 241
Totally geodesic 122 123 135 137 143 181 182 186 202
Trace 52 90 100—1 106 110 112—17 119 123 125 128 138 141—2 168 191 200 201—2 215 222 223 225—6 227 230 241
Vector fields 48 191 201 222
Without boundary 48 66—7 69 70 74 75 95 96 97 100 105 106 109 117 121 122 123 125 127 132 135 139 141 158 164 165 166 197 199 201 204 205 210 211 222 223 224 228 229 233 234 238 240 241
|
|
|
Реклама |
|
|
|