Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Mishchenko E.F., Rozov N.Kh. — Differential Equations with Small Parameters and Relaxation Oscillations
Mishchenko E.F., Rozov N.Kh. — Differential Equations with Small Parameters and Relaxation Oscillations



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Differential Equations with Small Parameters and Relaxation Oscillations

Àâòîðû: Mishchenko E.F., Rozov N.Kh.

Àííîòàöèÿ:

A large amount of work has been done on ordinary differential equations with small parameters multiplying derivatives. This book investigates questions related to the asymptotic calculation of relaxation oscillations, which are periodic solutions formed of sections of both slow-and fast-motion parts of phase trajectories. A detailed discussion of solutions of differential equations involving small parameters is given for regions near singular points.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1980

Êîëè÷åñòâî ñòðàíèö: 228

Äîáàâëåíà â êàòàëîã: 13.12.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Airy’s equation      69
Almost-discontinuous periodic solutions      139—170
Almost-discontinuous periodic solutions, asymptotic calculation of trajectory for      203—209
Almost-discontinuous periodic solutions, existence of      139—142 203—209
Almost-discontinuous periodic solutions, in systems of arbitrary order      199—216
Almost-discontinuous periodic solutions, uniqueness of      139—142
Approximate solution, defined      30
Approximations, asymptotic      see Asymptotic approximations
Approximations, zeroth      see Zeroth approximation
Arbitrary-order asymptotic solutions      171—198
Arbitrary-order systems      16—18
Arbitrary-order systems, almost-discontinuous periodic solutions in      199—216
Arbitrary-order systems, asymptotic calculation of solutions for      171—198
Asymptotic approximations      31—32
Asymptotic approximations, for trajectory in neighborhood of junction point      187—192
Asymptotic approximations, for trajectory of periodic solution      143—144
Asymptotic approximations, of trajectory at beginning of junction system      179—187
Asymptotic approximations, of trajectory at end of junction section      193—196
Asymptotic approximations, of trajectory for initial slow-motion and drop parts      132—137
Asymptotic approximations, of trajectory in fast-motion part      107—111
Asymptotic approximations, partial sum of series from      51—52
Asymptotic approximations, vs. actual trajectories at end of junction section      99—103
Asymptotic approximations, vs. actual trajectories in immediate vicinity of junction point      77—82
Asymptotic expansion, defined      31—32
Asymptotic expansion, for end of junction part of trajectory      96—99
Asymptotic formula for relaxation-oscillation period      164—168
Asymptotic formula for trajectory approximations      34
Asymptotic methods, application of      30—31
Asymptotic methods, general theory of      29—30
Asymptotic representations for drop part, proof of      125—132
Asymptotic representations for fast-motion part, derivation of      111—114
Asymptotic representations for junction part, proof of      103—107
Asymptotic representations, of initial drop part      123
Asymptotic representations, proof of      52—56
Asymptotic series, for coefficients of expansion near junction point      82—88
Asymptotic solutions, arbitrary-order      174—198
Asymptotic solutions, second-order      39—137
Auto-oscillations, relaxation-oscillations and      7
Bendixon’s criteria      21—22
Bessel equation      69
Bessel function, modified      69
Bifurcation value      16
Closed trajectory, isolated and stable properties of      200
Coefficients of expansion, asymptotic series for      82—88
Degenerate system, arbitrary-order system and      17
Degenerate system, closed phase trajectories of      37 139
Degenerate system, defined      9
Degenerate system, function system as solution of      27
Degenerate system, nondegenerate system and      39
Degenerate system, periodic solution for      199
Degenerate system, phase trajectory of      173
Degenerate system, solutions of      24—29 199
Degenerate system, trajectories of solutions in      10—11 29
Dependence, continuous      2
Dependence, discontinuity in      4
Dependence, smooth      1—3
Dependence, types of      1—37
Discontinuity, in dependence      4
Discontinuous periodic solution, defined      140
Discontinuous solution, defined      29
Discontinuous solution, phase trajectories and      45
Discontinuous solution, zeroth order in      173—176
Discontinuous system, trajectory of      29
Displacement vector      197—198
Dividing solution, for Riccati’s equation      71
Dorodnitsyn’s formula      168—170
Drop part of trajectory, asymptotic approximations of      119—125
Drop part of trajectory, defined      48
Drop part of trajectory, initial      48 123
Drop part of trajectory, proof of asymptotic representations of      125—132
Drop part of trajectory, special variables for      114—119
Drop point following junction point      45
Drop point, defined      173
Drop point, junction point and      29
Drop time, calculation of      157—164
Drop-off, defined      13
Equilibrium position, solutions as      26
Expansion, asymptotic      31—32
Expansion, coefficients of      82—88
Fast motion, defined      16—20
Fast variable, defined      16 18
Fast-motion equation system, stationary solutions of      35
Fast-motion equations, defined      16 44
Fast-motion equations, exponentially stable period solution for      36
Fast-motion equations, Hamiltonian and      37
Fast-motion equations, scalar form of      26
Fast-motion part of traj ectory, asymptotic approximations of trajectory on      107—111
Fast-motion part of traj ectory, defined      45 48 174
Fast-motion time, calculation of      156—157
Fast-motion time, fast-motion equation and      44
Finite time interval, solution dependence in      4
Frugauer generators      8
Function system, as solution of degenerate system      27
Generalized integral      90 95
Improper integrals, regularization of      89—95
Infinite time interval, solution dependence on      3—4
Initial drop part, asymptotic representations of      123
Initial drop part, defined      48
Initial fast-motion part, asymptotic approximation for      134
Initial fast-motion part, defined      48
Initial junction section, asymptotic representations vs. actual trajectories in      62—67
Initial slow-motion and drop parts, asymptotic approximations of      132—137
Integral, generalized      90 95
Junction part of trajectory, asymptotic expansions for end of      96—99
Junction part of trajectory, defined      48
Junction part of trajectory, proof of asymptotic representations of      103—107
Junction point, asymptotic approximations for trajectory in neighborhood of      187—193
Junction point, asymptotic approximations vs. actual trajectories in immediate vicinity of      77—82
Junction point, asymptotic series for coefficients of expansion near      82—88
Junction point, defined      29 42 173
Junction point, local coordinates in neighborhood of      56—59 176—179
Junction point, trajectory in neighborhood of      72—76
Junction section, asymptotic approximat ions vs. actual trajectories at end of      99—103
Junction section, asymptotic approximation of trajectory at end of      193—196
Junction section, asymptotic approximations of trajectory at beginning of      179—187
Junction section, special variables for      67—68
Junction time, calculation of      145—156
Junction, trajectory on initial part of      60—62
Limit cycle, for Van der Pol’s equation      35
Lyapunov function      205
Mapping, of trajectories      11—12
Multidimensional system, periodic solutions for      36
Multivibrators, symmetric      8
Mutual inductance, in Van der Pol’s equation      6—8
Newton — Leibnitz formula      90
Nondegenerate points, defined      40
Nondegenerate system, closed trajectory of      141
Nondegenerate system, defined      39
Nondegenerate system, phase velocity of      11
Nonregular point, defined      40 172
Nonregular point, nondegeneracy of      41
Numerical methods, approximate solution in      30
Ordinary points, defined      40
Parameter, asymptotic expansions of solutions with respect to      29—34
Periodic solution trajectory, asymptotic approximations for      143—144
Periodic solutions, Dorodnitsyn’s formula and      168—170
Periodic solutions, drop time and      157—164
Periodic solutions, exponentially stable      36
Periodic solutions, fast-inotion time and      156—157
Periodic solutions, junction time and      145—156
Periodic solutions, slow-motion time and      144—145
Periodic solutions, Van der Pol’s equation and      168—170
Phase plane, trajectory and      47
Phase point, stable equilibrium and      16 24
Phase portrait for fast and slow systems      21
Phase portrait of second-order system      13
Phase portrait of Van den Pol’s equation      13
Phase trajectories, assumptions and definitions in      39—40
Phase trajectories, discontinuous solution and      4 5
Phase trajectories, zeroth approximation of      45
Phase-velocity vector, infinite first component of      15
Phase-velocity vector, second component of      18
Poincar$\acute{e}$’s theorem      1—3
Rapid-motion equation system, defined      18
RayleighTs equation      6—7
Regular parts, defined      40
Regular point, defined      40
Relaxation motion, defined      20
Relaxation oscillations, asymptotic formula for period of      209—216
Relaxation oscillations, asymptotic theory and      35
Relaxation oscillations, auto-oscillations and      7
Relaxation oscillations, defined      9 13 16
Relaxation-oscillation period, asymptotic formula for      164—168
Riccati’s equation      68—72
Riccati’s equation, dividing solution for      71
Second-order systems, almost-discontinuous periodic solutions of      139—170
Second-order systems, asymptotic calculations and      34 39—137
Second-order systems, fast and slow motions in      9—16
Second-order systems, phase portrait of      13
Slow motion part, asymptotic approximations on      48—52
Slow motion part, defined      50 174
Slow motion part, in phase-velocity systems      48
Slow motion part, proof of asymptotic representations of      52—56
Slow motion, in arbitrary-order systems      16—20
Slow variable, defined      16—20
Slow-motion time, calculation of      144—145
Small parameters, dependence of solutions on      9
Small parameters, equations with      4—9
Smooth dependence      1—3 (see also Dependence)
Solutions, asymptotic calculation of      171—198
Solutions, asymptotic expansions of with respect to parameter      29—34
Solutions, differences between      10
Solutions, differentiability of with respect to parameter      3
Stable equilibrium, defined      13—14
Stable equilibrium, phase point and      24
Stable part, defined      13 16 42
Stable region, defined      26
Stationary solutions, of fast-motion equation system      35
Surge, defined      13
Trajectory approximations, asymptotic formulas for      34
Trajectory at beginning of junction system, asymptotic approximations for      179—187
Trajectory at end of junction section, asymptotic approximations for      193—196
Trajectory in neighborhood of junction point, asymptotic approximations for      187—193
Trajectory, asymptotic approximations for trajectory in neighborhood of junction point      72—76
Trajectory, asymptotic approximations on initial part of junction      60—62
Trajectory, asymptotic approximations on slow-motion parts of      48—52
Trajectory, asymptotic representation of, vs. actual      62—67
Trajectory, drop part of      see Drop part of trajectory
Trajectory, mapping of      11
Trajectory, of discontinuous system      29
Trajectory, on initial part of junction      60—62
Unstable part, defined      13 42
Vacuum tube oscillator, equation for      7
Van der Pol’s equation      5—7 10 14
Van der Pol’s equation, limit cycle for      35
Van der Pol’s equation, periodic solutions and      168—170
Van der Pol’s equation, phase portrait of      13
Zeroth approximation, defined      31—32
Zeroth approximation, discontinuous solution and      173—176
Zeroth approximation, of trajectory in neighborhood of junction point      75
Zeroth approximation, Riccati’s equation and      68
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå