Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Abels H. — Finite Presentability of S-Arithmetic Groups: Compact Presentability of Solvable Groups (Lecture Notes in Mathematics)
Abels H. — Finite Presentability of S-Arithmetic Groups: Compact Presentability of Solvable Groups (Lecture Notes in Mathematics)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Finite Presentability of S-Arithmetic Groups: Compact Presentability of Solvable Groups (Lecture Notes in Mathematics)

Автор: Abels H.

Аннотация:

The problem of determining which S-arithmetic groups have a finite presentation is solved for arbitrary linear algebraic groups over finite extension fields of #3. For certain solvable topological groups this problem may be reduced to an analogous problem, that of compact presentability. Most of this monograph deals with this question. The necessary background material and the general framework in which the problem arises are given partly in a detailed account, partly in survey form. In the last two chapters the application to S-arithmetic groups is given: here the reader is assumed to have some background in algebraic and arithmetic group. The book will be of interest to readers working on infinite groups, topological groups, and algebraic and arithmetic groups.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 1987

Количество страниц: 178

Добавлена в каталог: 10.12.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Abelianization of a group      2.3.5
Abelianization of a Lie algebra      2.1
Arithmetic group      0.2.1 6.1.1 7.1.2
Associated graded Lie algebra of a filtered group      2.3.3
Associated graded Lie algebra of a filtered Lie algebra      2.1
Bieri — Strebel invariant      3.4 7.3.1
Borel subgroup      6.4.1
Campbell — Hausdorff formula      2.5
CHARACTER      0.2.15 6.2.2
Colimit      4.2
Commensurable (subgroups)      5.3.1 7.1.2
Commutator      2.2.2 2.1
Compact presentation      1.1
Contracting (automorphism)      0.3.3 1.2
Derived group      2.3.5
Descending central series of a group      2.3.4
Descending central series of a Lie algebra      2.1
Divisible group      2.4.1
Expanding (automorphism)      1.2
Field, local      1.2 2.6
Field, p-adic      2.6
Filtered group      2.3.2
Filtered Lie algebra      2.1
Filtered topology given by a filtration      2.1.4
Function field      0.4.7
Generators      1.1
Graded Lie algebra      1.2.7
Group, arithmetic      0.2.1 6.1.1 7.1.2
Group, compactly generated      0.2.8 1.1 3.2.2 6.2.5
Group, compactly presented      0.2.8 1.1 5.6.1 6.2.3
Group, divisible      2.4.1
Group, finitely presentable, finitely presented      0.1 0.2 0.3 6.1 6.2.4 7.0
Homology of a group      5.1.3
Homology of a Lie algebra      5.2.1
Hopf extension for groups      5.1.2
Hopf extension for Lie algebras      5.2.2
Koszul complex      5.2.1
Lattice      5.3
Lie algebra, filtered      2.1
Lie algebra, graded      1.2.7 2.1 2.3.3
Lie algebra, nilpotent      2.1
Lie ring [= Lie algebra over $\mathbb{Z}$]      2.6 2.5.12
Linear algebraic      0.2.1
Linear algebraic, split      6.4
Linear algebraic, split solvable      6.2.1
Linear algebraic, trigonalisable      6.2.1
Linear algebraic, type $FP_n$      0.4.1 7.4.10
Local field      1.2 2.6
Malcev correspondence      5.3.5
Module (of a local field)      1.2
Nilpotent      2.3.7
Nilpotent group      2.3.7
Nilpotent Lie algebra      2 . 1
Nilpotent Lie group over k      2.5
p-divisible      2.4.1
p-Divisible group      2.4.1
P-isolator      2.4.3
P-number      2.4.1
P-radicable      2.4.1
P-radicable group      2.4.1
Positive dependence, positively dependent      3.2.1 Appendix
Presentation      1.1
Radicable      2.4.1
Radicable group      2.4.1
Reflection (of $\phi$ with respect to a root $\alpha$)      6.6.1
Relations      1.1
Root      6.3.1
Root system      6.4.1
Root, inverse      6.6.1
Root, simple      6.4.1
S-arithmetic      0.2.3 6.1.1 7.1.2
S-arithmetic group      0.2.3 6.1.1 7.1.2
Split solvable linear algebraic group      0.2.10 6.2.1
Tame      7.3.10
Tame group      7.3.10
Tame representation      0.2.15
Torus, split      0.2.10
Type $FP_2$      0.4.1 7.0 7.3.10 7.4.10
Type $F_n$      0.4
Type $F_\infty$      0.4
Unipotent endomorphism      0.2.6
Unipotent radical      0.2.6
Weight      0.2.15 3.1 7.3.2
Weight space      0.2.15 3.1 7.3.2
Weight, dominant      6.4.1
Weyl chamber      6.4.1
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте