Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Afifi A.A., Clark V. — Computer-Aided Multivariate Analysis
Afifi A.A., Clark V. — Computer-Aided Multivariate Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computer-Aided Multivariate Analysis

Àâòîðû: Afifi A.A., Clark V.

Àííîòàöèÿ:

Increasingly, researchers need to perform multivariate statisticalanalyses on their data. Unfortunately, a lack of mathematical training prevents many from taking advantage of these advanced techniques, in part, because books focus on the theory and neglect to explain how to perform and interpret multivariate analyses on real-life data.

For years, Afifi and Clark's Computer-Aided Multivariate Analysis has been a welcome exception-helping researchers choose the appropriate analyses for their data, carry them out, and interpret the results. Only a limited knowledge of statistics is assumed, and geometrical and graphical explanations are used to explain what the analyses do. However, the basic model is always given, and assumptions are discussed.

Reflecting the increased emphasis on computers, the Third Edition includes three additional statistical packages written for the personal computer. The authors also discuss data entry, database management, data screening, data transformations, as well as multivariate data analysis. Another new chapter focuses on log-linear analysis of multi-way frequency tables.

Students in a wide range of fields-ranging from psychology, sociology, and physical sciences to public health and biomedical science-will find Computer-Aided Multivariate Analysis especially informative and enlightening.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Third Edition

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 455

Äîáàâëåíà â êàòàëîã: 09.12.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$C_{p}$ criterion      172 184
Accelerated failure time model      317
Adjusted multiple correlation      171 177 181—183
Agglomerative clustering      391—395
AIC      172—173 185
Antilogarithm      53
ASCII files      32
Augmented partial residual plots      190
Bartlett's chi-square test for canonical correlation      233
Bonferroni inequality      139
Calibration      113—114
Canonical correlation analysis      6—7 227—241
Canonical correlation analysis, Bartlett's chi-square test      233
Canonical correlation analysis, canonical, correlation      229 232—233
Canonical correlation analysis, canonical, discriminant function      269—272
Canonical correlation analysis, canonical, loadings      236
Canonical correlation analysis, canonical, structural coefficients      236
Canonical correlation analysis, canonical, variable loadings      236
Canonical correlation analysis, canonical, variable scores      234
Canonical correlation analysis, canonical, variables      230 232—233
Canonical correlation analysis, coefficients      230—233
Canonical correlation analysis, computer programs      237—240
Canonical correlation analysis, correlation matrix      229
Canonical correlation analysis, first canonical correlation      230—232
Canonical correlation analysis, interpretation      230—233
Canonical correlation analysis, plots      234—235
Canonical correlation analysis, redundancy analysis      237
Canonical correlation analysis, second canonical correlation      232—233
Canonical correlation analysis, standardized coefficients      232
Canonical correlation analysis, tests of hypotheses      233—234
Canonical correlation analysis, what to watch for      240—241
Canonical discriminant function      269—272
Canonical variables      230 269—270
categorical variables      16
CESD      4 228 341
Classification of variables      13—16
Cluster analysis      9 381—409
Cluster analysis, agglomerative clustering      391—395
Cluster analysis, centroid      392—393
Cluster analysis, city-block distance      390
Cluster analysis, computer programs      404—406
Cluster analysis, dendrogram      394 399—400
Cluster analysis, distance matrix      389
Cluster analysis, distance measures      389—391
Cluster analysis, Euclidian distance      390—391
Cluster analysis, F test      398 402—403
Cluster analysis, graphical techniques      385—389
Cluster analysis, hierarchical clustering      391—395 398—400
Cluster analysis, icicles      394
Cluster analysis, K-means clustering      395—8 400—403
Cluster analysis, linkage methods      394
Cluster analysis, Mahalanobis distance      390
Cluster analysis, number of clusters      395 397—398
Cluster analysis, outliers      389
Cluster analysis, profile diagram      385—388
Cluster analysis, profile plot of means      402—403
Cluster analysis, scatter diagrams      383 385
Cluster analysis, seeds      397
Cluster analysis, similarity      389
Cluster analysis, standardized distance      390
Cluster analysis, standardized variables      390
Cluster analysis, taxonomic classification      381—382
Cluster analysis, tree graph      394 399—400
Cluster analysis, what to watch for      406
Code book construction      40—42
Coefficient of determination      138
Coefficient of variation      73 75
Combining data sets      35—36
Conditional distribution      134
confidence intervals      92—93 129 287 289
Continuous variables      16
Cook's distance      107 145
Correlation      94 96—99 132—137 140—143 169 181—183 229—233 256 338 356
Correlation, adjusted multiple      171 177 181—183
Correlation, matrix      132—133 140—141 169 229 338 356
Correlation, multiple      134—135 142—143 229 256
correlation, partial      135 143
Correlation, simple      94 96—99
Costs of misclassification      261—262
Covariance matrix      132—133
Cox versus log-linear regression      320—322
Cox versus logistic regression      322—324
Cox's proportional hazards model      319—320
Cumulative distribution      58 312—314
Data entry      28—32
Data management capabilities      33—36
Data screening      36—39 54—59 62—64 64—66 102—109
Data screening, independence      64—66 108
Data screening, normality      54—59 62—64
Data screening, outliers      104—108 347
Data transfer      32
dependent variables      17 85—86 125
Depression code book      41—42
Depression study      3—4 40—42 228—229 245 341—344 372—374
Depression study, CESD      3—4 228 341
Depression study, code book      42
Depression study, data      43
Depression study, definition of depression      245
Discrete variables      16
Discriminant analysis      7 243—279
Discriminant analysis, $D^{2}$      253—254 263—264
Discriminant analysis, canonical variables      269—272
Discriminant analysis, classification      243—252
Discriminant analysis, classification function      257
Discriminant analysis, coefficients      257
Discriminant analysis, computer programs      272—275
Discriminant analysis, cost of misclassification      261—262
Discriminant analysis, cross-validation      263
Discriminant analysis, description      244
Discriminant analysis, dividing point      248 259—262
Discriminant analysis, dummy variable      256
Discriminant analysis, Fisher discriminant function      250—253
Discriminant analysis, Hotelling $T^{2}$      265
Discriminant analysis, jackknife      263
Discriminant analysis, Mahalanobis distance      253—254 256 263—264 272
Discriminant analysis, minimizing misclassification      260
Discriminant analysis, more than two groups      267—269
Discriminant analysis, pooled variance of discriminant function      253
Discriminant analysis, posterior probabilities      258—259
Discriminant analysis, prediction      244
Discriminant analysis, prediction by guessing      264
Discriminant analysis, prior probabilities      259—261
Discriminant analysis, quadratic discriminant analysis      274
Discriminant analysis, regression analogy      255—256
Discriminant analysis, renaming groups      257
Discriminant analysis, standardized coefficients      258
Discriminant analysis, tests of hypotheses      265—266
Discriminant analysis, variable selection      266—267
Discriminant analysis, what to watch for      275—276
Discriminant analysis, Wilks'lambda      272
Dummy variables      202—209 256 269 286
Durbin — Watson statistic      108
e as base      52
Eigenvalues      335—336 341—343 359 365
Ellipse of concentration      96—98 234 249—250
Event history analysis      307
Exponential function      53
Factor analysis      8 354—379
Factor analysis, based on correlation      356 362
Factor analysis, common factors      357
Factor analysis, communality      357—358 360 362—363
Factor analysis, computer programs      374—376
Factor analysis, direct quartimin rotation      369—370
Factor analysis, eigenvalues      359 365—376
Factor analysis, factor diagram      361
Factor analysis, factor loadings      357—358 360 363
Factor analysis, factor model      356—357
Factor analysis, factor rotation      365—370
Factor analysis, factor score coefficients      371—372
Factor analysis, factor scores      371—372
Factor analysis, factor structure matrix      359
Factor analysis, initial factor extraction      359—365
Factor analysis, iterated principal components      362—363
Factor analysis, Kaiser normalization      366
Factor analysis, latent factors      378
Factor analysis, loading of $\imath$th variable      357—358 360
Factor analysis, Mahalanobis distance      374
Factor analysis, maximum likelihood      365
Factor analysis, nonorthogonal rotations      368—371
Factor analysis, number of factors      364—365 374
Factor analysis, oblique rotation      368—371 374
Factor analysis, orthogonal rotation      366—368
Factor analysis, outliers      376
Factor analysis, pattern matrix      359
Factor analysis, principal axis factoring      362
Factor analysis, principal components      358—362
Factor analysis, principal factor analysis      362—365
Factor analysis, regression procedure      372
Factor analysis, rotated factors      365—371
Factor analysis, scree method      365
Factor analysis, specificity      357 360
Factor analysis, standardized x      356 372
Factor analysis, storing factor scores      372
Factor analysis, unique factors      357
Factor analysis, varimax rotation      366—368
Factor analysis, what to watch for      376—377
Failure time analysis      307
Fisher discriminant function      250—253
Forced expiratory volume 1 sec (FEV1)      8 64 86 125
Forced vital capacity (FVC)      8 64
Forecasting      114
General F test      153—154 173—174
Geometric mean      75
Harmonic mean      75
Hierarchical clustering      391—395 398—400
Homoscedasticity      88
Hotelling $T^{2}$      265
Independence, assessing      64—67 108 145 415—416 421 427—428 431—432
Independent variables      17 85 125
Indicator variables      203
Influence of observation      107
Interaction      146—148 207—208 287
Interquartile range      74
Interval variables      15 74
Jackknife procedure      263
Join      35—36
JOIN MATCH      35
K-means clustering      395—398 400—403
Kolmogorov — Smirnov D test      63
Least squares method      89—91 129
Leverage      105—106 144
Likelihood ratio chi-square      418 421 434
Log-linear analysis      9 410—442
Log-linear analysis, both explanatory and response variables      432
Log-linear analysis, comparison with logistic      437
Log-linear analysis, computer programs      437—439
Log-linear analysis, conditional independence model      423
Log-linear analysis, degrees of freedom      419 440
Log-linear analysis, exploratory model construction      425—430
Log-linear analysis, fit of model      430—431
Log-linear analysis, hierarchical models      411 418 424
Log-linear analysis, homogenous association model      423—424
Log-linear analysis, likelihood ratio chi-square      418 421 434
Log-linear analysis, logit model      435—437
Log-linear analysis, marginal association test      428
Log-linear analysis, multiway frequency tables      411—414 421—437
Log-linear analysis, mutual independence model      422
Log-linear analysis, notation      415
Log-linear analysis, odds ratio      421
Log-linear analysis, one variable jointly independent model      423
Log-linear analysis, partial association test      428
Log-linear analysis, Pearson chi-square      417—418 421 433
Log-linear analysis, sample size      432—434
Log-linear analysis, sampling      415 431—432
Log-linear analysis, saturated model      417 424
Log-linear analysis, standardized deviates      431
Log-linear analysis, stepwise selection      429—430
Log-linear analysis, structural zeros      433
Log-linear analysis, tests of hypotheses      415 416 421 427—428 431—432
Log-linear analysis, what to watch for      439—440
Log-linear regression model      317—319
Logarithmic transformation      48—53 111
Logistic regression      8 281—305
Logistic regression, adjust constant      297
Logistic regression, applications      296—299
Logistic regression, assumption      284—285
Logistic regression, case-control sample      297—299
Logistic regression, categorical variables      285—287
Logistic regression, coefficients      284—289
Logistic regression, computer programs      299—301
Logistic regression, confidence intervals categorical data      287
Logistic regression, confidence intervals continuous data      289
Logistic regression, continuous variables      288—289
Logistic regression, cross-sectional sample      297
Logistic regression, cutoff point      293—294
Logistic regression, dummy variables      285—287
Logistic regression, goodness of fit chi-square      292—293
Logistic regression, improvement chi-square      291
Logistic regression, interaction      287 293
Logistic regression, logarithm odds      284
Logistic regression, logistic function      283—284
Logistic regression, logit      284
Logistic regression, matched samples      297—299
Logistic regression, maximum likelihood      285
Logistic regression, model fit      291—293
Logistic regression, odds      284
Logistic regression, odds ratio      286—287
Logistic regression, prior probabilities      288
Logistic regression, probability population      285 288
Logistic regression, ROC curves      295—296
Logistic regression, sensitivity      295
Logistic regression, specificity      295
Logistic regression, standard error      287—289
Logistic regression, step wise variable selection      290—291
Logistic regression, versus Cox's regression model      322—324
Logistic regression, what to watch for      301—302
Logit model      435—437
Lung cancer code book      310
Lung cancer survival data      448
Lung function code book      444
Lung function data      446
Lung function definition      8 64
Mahalanobis distance      253—254 256 261—264 390
Median      74
MERGE      35—36
Missing at random      198
Missing completely at random      198
Missing values      36—38 197—202
Missing Values, imputation      199
Missing Values, maximum likelihood substitution      200
Missing Values, mean substitution      199
MODE      73
Multicollinearity      149 212—219 331 345—347
Multiple regression      6 124—224
Multiple regression, $C_{p}$ criterion      172 184
Multiple regression, additive model      137 146
Multiple regression, adjusted multiple correlation      171 177 181—183
Multiple regression, AIC      172—173 185
Multiple regression, analysis of variance      137—138
Multiple regression, augmented partial residual plots      190
Multiple regression, backward elimination      178—179
Multiple regression, Bonferroni inequality      139—140
Multiple regression, coefficient of determination      139
Multiple regression, comparing regression planes      150—153
Multiple regression, computer programs      154—157 185—187
Multiple regression, conditional distribution      134
Multiple regression, confidence intervals      130
Multiple regression, Cook's distance      145
Multiple regression, correlation matrix      132—133 140—141
Multiple regression, covariance matrix      132—133
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå