Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Afifi A.A., Clark V. — Computer-Aided Multivariate Analysis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Computer-Aided Multivariate Analysis
Àâòîðû: Afifi A.A., Clark V.
Àííîòàöèÿ: Increasingly, researchers need to perform multivariate statisticalanalyses on their data. Unfortunately, a lack of mathematical training prevents many from taking advantage of these advanced techniques, in part, because books focus on the theory and neglect to explain how to perform and interpret multivariate analyses on real-life data.
For years, Afifi and Clark's Computer-Aided Multivariate Analysis has been a welcome exception-helping researchers choose the appropriate analyses for their data, carry them out, and interpret the results. Only a limited knowledge of statistics is assumed, and geometrical and graphical explanations are used to explain what the analyses do. However, the basic model is always given, and assumptions are discussed.
Reflecting the increased emphasis on computers, the Third Edition includes three additional statistical packages written for the personal computer. The authors also discuss data entry, database management, data screening, data transformations, as well as multivariate data analysis. Another new chapter focuses on log-linear analysis of multi-way frequency tables.
Students in a wide range of fields-ranging from psychology, sociology, and physical sciences to public health and biomedical science-will find Computer-Aided Multivariate Analysis especially informative and enlightening.
ßçûê:
Ðóáðèêà: Computer science /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: Third Edition
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 455
Äîáàâëåíà â êàòàëîã: 09.12.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
criterion 172 184
Accelerated failure time model 317
Adjusted multiple correlation 171 177 181—183
Agglomerative clustering 391—395
AIC 172—173 185
Antilogarithm 53
ASCII files 32
Augmented partial residual plots 190
Bartlett's chi-square test for canonical correlation 233
Bonferroni inequality 139
Calibration 113—114
Canonical correlation analysis 6—7 227—241
Canonical correlation analysis, Bartlett's chi-square test 233
Canonical correlation analysis, canonical, correlation 229 232—233
Canonical correlation analysis, canonical, discriminant function 269—272
Canonical correlation analysis, canonical, loadings 236
Canonical correlation analysis, canonical, structural coefficients 236
Canonical correlation analysis, canonical, variable loadings 236
Canonical correlation analysis, canonical, variable scores 234
Canonical correlation analysis, canonical, variables 230 232—233
Canonical correlation analysis, coefficients 230—233
Canonical correlation analysis, computer programs 237—240
Canonical correlation analysis, correlation matrix 229
Canonical correlation analysis, first canonical correlation 230—232
Canonical correlation analysis, interpretation 230—233
Canonical correlation analysis, plots 234—235
Canonical correlation analysis, redundancy analysis 237
Canonical correlation analysis, second canonical correlation 232—233
Canonical correlation analysis, standardized coefficients 232
Canonical correlation analysis, tests of hypotheses 233—234
Canonical correlation analysis, what to watch for 240—241
Canonical discriminant function 269—272
Canonical variables 230 269—270
categorical variables 16
CESD 4 228 341
Classification of variables 13—16
Cluster analysis 9 381—409
Cluster analysis, agglomerative clustering 391—395
Cluster analysis, centroid 392—393
Cluster analysis, city-block distance 390
Cluster analysis, computer programs 404—406
Cluster analysis, dendrogram 394 399—400
Cluster analysis, distance matrix 389
Cluster analysis, distance measures 389—391
Cluster analysis, Euclidian distance 390—391
Cluster analysis, F test 398 402—403
Cluster analysis, graphical techniques 385—389
Cluster analysis, hierarchical clustering 391—395 398—400
Cluster analysis, icicles 394
Cluster analysis, K-means clustering 395—8 400—403
Cluster analysis, linkage methods 394
Cluster analysis, Mahalanobis distance 390
Cluster analysis, number of clusters 395 397—398
Cluster analysis, outliers 389
Cluster analysis, profile diagram 385—388
Cluster analysis, profile plot of means 402—403
Cluster analysis, scatter diagrams 383 385
Cluster analysis, seeds 397
Cluster analysis, similarity 389
Cluster analysis, standardized distance 390
Cluster analysis, standardized variables 390
Cluster analysis, taxonomic classification 381—382
Cluster analysis, tree graph 394 399—400
Cluster analysis, what to watch for 406
Code book construction 40—42
Coefficient of determination 138
Coefficient of variation 73 75
Combining data sets 35—36
Conditional distribution 134
confidence intervals 92—93 129 287 289
Continuous variables 16
Cook's distance 107 145
Correlation 94 96—99 132—137 140—143 169 181—183 229—233 256 338 356
Correlation, adjusted multiple 171 177 181—183
Correlation, matrix 132—133 140—141 169 229 338 356
Correlation, multiple 134—135 142—143 229 256
correlation, partial 135 143
Correlation, simple 94 96—99
Costs of misclassification 261—262
Covariance matrix 132—133
Cox versus log-linear regression 320—322
Cox versus logistic regression 322—324
Cox's proportional hazards model 319—320
Cumulative distribution 58 312—314
Data entry 28—32
Data management capabilities 33—36
Data screening 36—39 54—59 62—64 64—66 102—109
Data screening, independence 64—66 108
Data screening, normality 54—59 62—64
Data screening, outliers 104—108 347
Data transfer 32
dependent variables 17 85—86 125
Depression code book 41—42
Depression study 3—4 40—42 228—229 245 341—344 372—374
Depression study, CESD 3—4 228 341
Depression study, code book 42
Depression study, data 43
Depression study, definition of depression 245
Discrete variables 16
Discriminant analysis 7 243—279
Discriminant analysis, 253—254 263—264
Discriminant analysis, canonical variables 269—272
Discriminant analysis, classification 243—252
Discriminant analysis, classification function 257
Discriminant analysis, coefficients 257
Discriminant analysis, computer programs 272—275
Discriminant analysis, cost of misclassification 261—262
Discriminant analysis, cross-validation 263
Discriminant analysis, description 244
Discriminant analysis, dividing point 248 259—262
Discriminant analysis, dummy variable 256
Discriminant analysis, Fisher discriminant function 250—253
Discriminant analysis, Hotelling 265
Discriminant analysis, jackknife 263
Discriminant analysis, Mahalanobis distance 253—254 256 263—264 272
Discriminant analysis, minimizing misclassification 260
Discriminant analysis, more than two groups 267—269
Discriminant analysis, pooled variance of discriminant function 253
Discriminant analysis, posterior probabilities 258—259
Discriminant analysis, prediction 244
Discriminant analysis, prediction by guessing 264
Discriminant analysis, prior probabilities 259—261
Discriminant analysis, quadratic discriminant analysis 274
Discriminant analysis, regression analogy 255—256
Discriminant analysis, renaming groups 257
Discriminant analysis, standardized coefficients 258
Discriminant analysis, tests of hypotheses 265—266
Discriminant analysis, variable selection 266—267
Discriminant analysis, what to watch for 275—276
Discriminant analysis, Wilks'lambda 272
Dummy variables 202—209 256 269 286
Durbin — Watson statistic 108
e as base 52
Eigenvalues 335—336 341—343 359 365
Ellipse of concentration 96—98 234 249—250
Event history analysis 307
Exponential function 53
Factor analysis 8 354—379
Factor analysis, based on correlation 356 362
Factor analysis, common factors 357
Factor analysis, communality 357—358 360 362—363
Factor analysis, computer programs 374—376
Factor analysis, direct quartimin rotation 369—370
Factor analysis, eigenvalues 359 365—376
Factor analysis, factor diagram 361
Factor analysis, factor loadings 357—358 360 363
Factor analysis, factor model 356—357
Factor analysis, factor rotation 365—370
Factor analysis, factor score coefficients 371—372
Factor analysis, factor scores 371—372
Factor analysis, factor structure matrix 359
Factor analysis, initial factor extraction 359—365
Factor analysis, iterated principal components 362—363
Factor analysis, Kaiser normalization 366
Factor analysis, latent factors 378
Factor analysis, loading of th variable 357—358 360
Factor analysis, Mahalanobis distance 374
Factor analysis, maximum likelihood 365
Factor analysis, nonorthogonal rotations 368—371
Factor analysis, number of factors 364—365 374
Factor analysis, oblique rotation 368—371 374
Factor analysis, orthogonal rotation 366—368
Factor analysis, outliers 376
Factor analysis, pattern matrix 359
Factor analysis, principal axis factoring 362
Factor analysis, principal components 358—362
Factor analysis, principal factor analysis 362—365
Factor analysis, regression procedure 372
Factor analysis, rotated factors 365—371
Factor analysis, scree method 365
Factor analysis, specificity 357 360
Factor analysis, standardized x 356 372
Factor analysis, storing factor scores 372
Factor analysis, unique factors 357
Factor analysis, varimax rotation 366—368
Factor analysis, what to watch for 376—377
Failure time analysis 307
Fisher discriminant function 250—253
Forced expiratory volume 1 sec (FEV1) 8 64 86 125
Forced vital capacity (FVC) 8 64
Forecasting 114
General F test 153—154 173—174
Geometric mean 75
Harmonic mean 75
Hierarchical clustering 391—395 398—400
Homoscedasticity 88
Hotelling 265
Independence, assessing 64—67 108 145 415—416 421 427—428 431—432
Independent variables 17 85 125
Indicator variables 203
Influence of observation 107
Interaction 146—148 207—208 287
Interquartile range 74
Interval variables 15 74
Jackknife procedure 263
Join 35—36
JOIN MATCH 35
K-means clustering 395—398 400—403
Kolmogorov — Smirnov D test 63
Least squares method 89—91 129
Leverage 105—106 144
Likelihood ratio chi-square 418 421 434
Log-linear analysis 9 410—442
Log-linear analysis, both explanatory and response variables 432
Log-linear analysis, comparison with logistic 437
Log-linear analysis, computer programs 437—439
Log-linear analysis, conditional independence model 423
Log-linear analysis, degrees of freedom 419 440
Log-linear analysis, exploratory model construction 425—430
Log-linear analysis, fit of model 430—431
Log-linear analysis, hierarchical models 411 418 424
Log-linear analysis, homogenous association model 423—424
Log-linear analysis, likelihood ratio chi-square 418 421 434
Log-linear analysis, logit model 435—437
Log-linear analysis, marginal association test 428
Log-linear analysis, multiway frequency tables 411—414 421—437
Log-linear analysis, mutual independence model 422
Log-linear analysis, notation 415
Log-linear analysis, odds ratio 421
Log-linear analysis, one variable jointly independent model 423
Log-linear analysis, partial association test 428
Log-linear analysis, Pearson chi-square 417—418 421 433
Log-linear analysis, sample size 432—434
Log-linear analysis, sampling 415 431—432
Log-linear analysis, saturated model 417 424
Log-linear analysis, standardized deviates 431
Log-linear analysis, stepwise selection 429—430
Log-linear analysis, structural zeros 433
Log-linear analysis, tests of hypotheses 415 416 421 427—428 431—432
Log-linear analysis, what to watch for 439—440
Log-linear regression model 317—319
Logarithmic transformation 48—53 111
Logistic regression 8 281—305
Logistic regression, adjust constant 297
Logistic regression, applications 296—299
Logistic regression, assumption 284—285
Logistic regression, case-control sample 297—299
Logistic regression, categorical variables 285—287
Logistic regression, coefficients 284—289
Logistic regression, computer programs 299—301
Logistic regression, confidence intervals categorical data 287
Logistic regression, confidence intervals continuous data 289
Logistic regression, continuous variables 288—289
Logistic regression, cross-sectional sample 297
Logistic regression, cutoff point 293—294
Logistic regression, dummy variables 285—287
Logistic regression, goodness of fit chi-square 292—293
Logistic regression, improvement chi-square 291
Logistic regression, interaction 287 293
Logistic regression, logarithm odds 284
Logistic regression, logistic function 283—284
Logistic regression, logit 284
Logistic regression, matched samples 297—299
Logistic regression, maximum likelihood 285
Logistic regression, model fit 291—293
Logistic regression, odds 284
Logistic regression, odds ratio 286—287
Logistic regression, prior probabilities 288
Logistic regression, probability population 285 288
Logistic regression, ROC curves 295—296
Logistic regression, sensitivity 295
Logistic regression, specificity 295
Logistic regression, standard error 287—289
Logistic regression, step wise variable selection 290—291
Logistic regression, versus Cox's regression model 322—324
Logistic regression, what to watch for 301—302
Logit model 435—437
Lung cancer code book 310
Lung cancer survival data 448
Lung function code book 444
Lung function data 446
Lung function definition 8 64
Mahalanobis distance 253—254 256 261—264 390
Median 74
MERGE 35—36
Missing at random 198
Missing completely at random 198
Missing values 36—38 197—202
Missing Values, imputation 199
Missing Values, maximum likelihood substitution 200
Missing Values, mean substitution 199
MODE 73
Multicollinearity 149 212—219 331 345—347
Multiple regression 6 124—224
Multiple regression, criterion 172 184
Multiple regression, additive model 137 146
Multiple regression, adjusted multiple correlation 171 177 181—183
Multiple regression, AIC 172—173 185
Multiple regression, analysis of variance 137—138
Multiple regression, augmented partial residual plots 190
Multiple regression, backward elimination 178—179
Multiple regression, Bonferroni inequality 139—140
Multiple regression, coefficient of determination 139
Multiple regression, comparing regression planes 150—153
Multiple regression, computer programs 154—157 185—187
Multiple regression, conditional distribution 134
Multiple regression, confidence intervals 130
Multiple regression, Cook's distance 145
Multiple regression, correlation matrix 132—133 140—141
Multiple regression, covariance matrix 132—133
Ðåêëàìà