Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Afifi A.A., Clark V. — Computer-Aided Multivariate Analysis
Afifi A.A., Clark V. — Computer-Aided Multivariate Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computer-Aided Multivariate Analysis

Àâòîðû: Afifi A.A., Clark V.

Àííîòàöèÿ:

Increasingly, researchers need to perform multivariate statisticalanalyses on their data. Unfortunately, a lack of mathematical training prevents many from taking advantage of these advanced techniques, in part, because books focus on the theory and neglect to explain how to perform and interpret multivariate analyses on real-life data.

For years, Afifi and Clark's Computer-Aided Multivariate Analysis has been a welcome exception-helping researchers choose the appropriate analyses for their data, carry them out, and interpret the results. Only a limited knowledge of statistics is assumed, and geometrical and graphical explanations are used to explain what the analyses do. However, the basic model is always given, and assumptions are discussed.

Reflecting the increased emphasis on computers, the Third Edition includes three additional statistical packages written for the personal computer. The authors also discuss data entry, database management, data screening, data transformations, as well as multivariate data analysis. Another new chapter focuses on log-linear analysis of multi-way frequency tables.

Students in a wide range of fields-ranging from psychology, sociology, and physical sciences to public health and biomedical science-will find Computer-Aided Multivariate Analysis especially informative and enlightening.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Third Edition

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 455

Äîáàâëåíà â êàòàëîã: 09.12.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Multiple regression, descriptive      142 167
Multiple regression, dummy variables      202—209
Multiple regression, Durbin — Watson statistic      145
Multiple regression, fixed Zcase      128—130 137—143
Multiple regression, forcing variables      181
Multiple regression, forward selection      175—178
Multiple regression, general F test      153 173—175
Multiple regression, hat matrix      144
Multiple regression, hyperellipsoid      132
Multiple regression, indicator variables      202—209
Multiple regression, interactions      146—147 207—208
Multiple regression, least squares method      129
Multiple regression, leverage      144
Multiple regression, linear constraints on parameters      209—212
Multiple regression, maximum F-to-remove      178—179 180
Multiple regression, minimum F-to-enter      176—177 180
Multiple regression, missing values      197—202
Multiple regression, multicollinearity      149 212—219 345—347
Multiple regression, multiple correlation      134—135 142—143 171
Multiple regression, normal probability plots      145
Multiple regression, normality assumption      130 132 134 145
Multiple regression, outliers      144
Multiple regression, partial correlation      135—137 143
Multiple regression, partial regression coefficient      128—129
Multiple regression, partial regression plots      189—190
Multiple regression, partial residual plots      190
Multiple regression, polynomial regression      146—147
Multiple regression, prediction intervals      130
Multiple regression, predictive      167 173
Multiple regression, principal components      345—347
Multiple regression, reference group      203—205
Multiple regression, regression plane      126—127
Multiple regression, regression through origin      148
Multiple regression, residual mean square      129 172
Multiple regression, residual sums of squares      139 197
Multiple regression, residuals      144—145 148
Multiple regression, ridge regression      214—219
Multiple regression, ridge trace      217
Multiple regression, RSQUARE      139
Multiple regression, segmented curve regression      210—212
Multiple regression, serial correlation      145
Multiple regression, spline regression      210—212
Multiple regression, stagewise regression      190—191
Multiple regression, standard error of estimate      129
Multiple regression, standardized coefficients      141—142 213
Multiple regression, stepwise selection      175—181
Multiple regression, stopping rule      176—177
Multiple regression, subset regression      181—184
Multiple regression, testing regression planes      150—151
Multiple regression, tests of $\beta=0$      139
Multiple regression, tolerance      149
Multiple regression, transformations      145—146
Multiple regression, variable selection      166—193
Multiple regression, variable-X case      130—137 140—143
Multiple regression, variance inflation factor      149
Multiple regression, weighted regression      148
Multiple regression, what to watch for      157—160 191—192
Multivariate analysis, definition      3
Multiway frequency tables      411 412—414 421—437
N number of cases, sampling units      13
Nominal variables      14—15 72—74
Normal distribution      54—55 131
Normal probability plots      57—58 108
Normality      57—58 62—63 108
Normality, normal probability plots      57—58 108
Normality, tests      62—63
Odds      284
Odds ratio      286—287 421
Ordinal variables      15 74
Outliers      38—39 104—108 144—145 331 347 376 389
Outliers in X      106—107 144
Outliers in Y      105—106 144
P number of variables      13
Package programs      23—28
Paired data      115
Partial regression plots      189
Partial residual plots      190
Percentiles      74
Poisson distribution      59
Polynomial regression      146—147
Posterior probabilities      258—259
Power transformations      53 59—62
Prediction intervals      93 130
Principal components      8 330—353
Principal components, characteristic roots      335
Principal components, coefficients      333—335
Principal components, computer programs      348—350
Principal components, correlation      338—339
Principal components, cumulative percentage variance      341—343
Principal components, definition      333
Principal components, eigenvalues      335—336 341—343
Principal components, eigenvector      336
Principal components, ellipse of concentration      335
Principal components, interpretation of coefficients      334—335 344
Principal components, latent root      335
Principal components, multicollinearity      345—347
Principal components, normality      331
Principal components, number of components      337 341—344
Principal components, outliers      331 347
Principal components, reduction of dimensionality      337
Principal components, regression analysis      345—347
Principal components, scree plots      337
Principal components, shape component      345
Principal components, size component      345
Principal components, standardized x      338—340
Principal components, tests of hypotheses      345
Principal components, variance of components      334
Principal components, what to watch for      350—354
Quartile deviation      74
RANGE      74
Ratio variables      16 75
Reflected variables      41
Regression      85—224
Regression, multiple linear      6 124—224
Regression, polynomial      146—147
Regression, principal component      345—347
Regression, ridge      214—219
Regression, segmented-curve      210—212
Regression, simple linear      6 85—123
Regression, spline      210—212
Regression, stagewise      190—191
Replacing missing data      199—201
Residuals      91 104—105 108 144—145 148
Ridge regression      214—219
ROC curves      295—296
Rotated factors      365—371
Saving data      40
Scale parameters      314
Segmented-curve regression      210—212
Selecting appropriate analysis      71—79
Serial correlation      108 145
Shape parameter      314
Shapiro — Wilk test      62
simple linear regression      6 85—123
Simple linear regression, adjusted Y      115
Simple linear regression, analysis of variance      101
Simple linear regression, assumptions      88—89 108—109
Simple linear regression, calibration      113—114
Simple linear regression, computer programs      115—116
Simple linear regression, confidence intervals      92
Simple linear regression, Cook's distance      107
Simple linear regression, correlation      94 97—99
Simple linear regression, covariance      93
Simple linear regression, descriptive      86
Simple linear regression, Durbin — Watson statistic      108
Simple linear regression, ellipse of concentration      96—98
Simple linear regression, fixed-X case      86 88—93 94—96
Simple linear regression, forecasting      114
Simple linear regression, h statistic      105—106
Simple linear regression, influence of observation      107
Simple linear regression, intercept      89—90
Simple linear regression, leverage      105—106
Simple linear regression, linearity      109
Simple linear regression, outliers      105—108
Simple linear regression, prediction intervals      93
Simple linear regression, predictive      86
Simple linear regression, regression line      88
Simple linear regression, regression through origin      111—112
Simple linear regression, residual analysis      102—106
Simple linear regression, residual degrees of freedom      91
Simple linear regression, residual mean square      91—92
Simple linear regression, residuals      91 103—104 115
Simple linear regression, robustness      108—109
Simple linear regression, serial correlation      108
Simple linear regression, slope      89
Simple linear regression, standard error      92 95
Simple linear regression, standardized coefficients      100—101
Simple linear regression, standardized residuals      105
Simple linear regression, studentized residuals      105
Simple linear regression, tests of hypotheses      94—95 101
Simple linear regression, transformations      109—111
Simple linear regression, variable-X case      86 93—94 96—100
Simple linear regression, weighted least squares      112
Simple linear regression, what to watch for      117—118
skewness      63
Spline regression      210—212
Square root transformation      53 59
Stagewise regression      190—191
Standardized regression coefficients      100—101 141 213
Standardized residuals      105
Stepwise selection      175—181 274—275 290—291 429—430
Stevens's classification system      13—14 72—78
Stevens's classification system, selecting analysis      72—78
Studentized residuals      105
Subset regression      181—184
Suggested analyses      76—78
Survival analysis      7—8 306—329
Survival analysis, accelerated life model      317—319
Survival analysis, computer programs      324—326
Survival analysis, Cox versus log-linear regression      320—322
Survival analysis, Cox versus logistic regression      322—324
Survival analysis, Cox's proportional hazards model      319—320
Survival analysis, cumulative death distribution function      311—313
Survival analysis, death density function      311—312
Survival analysis, exponential distribution      314—316
Survival analysis, hazard function      312 314—315
Survival analysis, log-linear regression model      317—319
Survival analysis, log-linear versus Cox's model      320—322
Survival analysis, proportional hazards model      319
Survival analysis, scale parameter      314
Survival analysis, shape parameter      314
Survival analysis, survival function      311—314
Survival analysis, T-year survival rate      308—309
Survival analysis, Weibull distribution      314—317
Survival analysis, what to watch for      326—327
Testing regression planes      138 150—153
Tolerance      149
Transformations      39—40 48—64 109—111 145—146
Transformations in multiple regression      145—6
Transformations in simple linear regression      109—111
Transformations, assessing need      63—64
Transformations, common transformations      48—53 109—111
Transformations, data manipulation      39—40
Transformations, graphical methods      54—62 109—111
Transformations, logarithmic      49—53 111
Transformations, normal probability plots      55—58
Transformations, power      53 59—62
Transformations, square root      50 53
Variable definition      12
Variance inflation factor      149
Weighted least squares      112 148
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå