Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Afifi A.A., Clark V. — Computer-Aided Multivariate Analysis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Computer-Aided Multivariate Analysis
Àâòîðû: Afifi A.A., Clark V.
Àííîòàöèÿ: Increasingly, researchers need to perform multivariate statisticalanalyses on their data. Unfortunately, a lack of mathematical training prevents many from taking advantage of these advanced techniques, in part, because books focus on the theory and neglect to explain how to perform and interpret multivariate analyses on real-life data.
For years, Afifi and Clark's Computer-Aided Multivariate Analysis has been a welcome exception-helping researchers choose the appropriate analyses for their data, carry them out, and interpret the results. Only a limited knowledge of statistics is assumed, and geometrical and graphical explanations are used to explain what the analyses do. However, the basic model is always given, and assumptions are discussed.
Reflecting the increased emphasis on computers, the Third Edition includes three additional statistical packages written for the personal computer. The authors also discuss data entry, database management, data screening, data transformations, as well as multivariate data analysis. Another new chapter focuses on log-linear analysis of multi-way frequency tables.
Students in a wide range of fields-ranging from psychology, sociology, and physical sciences to public health and biomedical science-will find Computer-Aided Multivariate Analysis especially informative and enlightening.
ßçûê:
Ðóáðèêà: Computer science /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: Third Edition
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 455
Äîáàâëåíà â êàòàëîã: 09.12.2009
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Multiple regression, descriptive 142 167
Multiple regression, dummy variables 202—209
Multiple regression, Durbin — Watson statistic 145
Multiple regression, fixed Zcase 128—130 137—143
Multiple regression, forcing variables 181
Multiple regression, forward selection 175—178
Multiple regression, general F test 153 173—175
Multiple regression, hat matrix 144
Multiple regression, hyperellipsoid 132
Multiple regression, indicator variables 202—209
Multiple regression, interactions 146—147 207—208
Multiple regression, least squares method 129
Multiple regression, leverage 144
Multiple regression, linear constraints on parameters 209—212
Multiple regression, maximum F-to-remove 178—179 180
Multiple regression, minimum F-to-enter 176—177 180
Multiple regression, missing values 197—202
Multiple regression, multicollinearity 149 212—219 345—347
Multiple regression, multiple correlation 134—135 142—143 171
Multiple regression, normal probability plots 145
Multiple regression, normality assumption 130 132 134 145
Multiple regression, outliers 144
Multiple regression, partial correlation 135—137 143
Multiple regression, partial regression coefficient 128—129
Multiple regression, partial regression plots 189—190
Multiple regression, partial residual plots 190
Multiple regression, polynomial regression 146—147
Multiple regression, prediction intervals 130
Multiple regression, predictive 167 173
Multiple regression, principal components 345—347
Multiple regression, reference group 203—205
Multiple regression, regression plane 126—127
Multiple regression, regression through origin 148
Multiple regression, residual mean square 129 172
Multiple regression, residual sums of squares 139 197
Multiple regression, residuals 144—145 148
Multiple regression, ridge regression 214—219
Multiple regression, ridge trace 217
Multiple regression, RSQUARE 139
Multiple regression, segmented curve regression 210—212
Multiple regression, serial correlation 145
Multiple regression, spline regression 210—212
Multiple regression, stagewise regression 190—191
Multiple regression, standard error of estimate 129
Multiple regression, standardized coefficients 141—142 213
Multiple regression, stepwise selection 175—181
Multiple regression, stopping rule 176—177
Multiple regression, subset regression 181—184
Multiple regression, testing regression planes 150—151
Multiple regression, tests of 139
Multiple regression, tolerance 149
Multiple regression, transformations 145—146
Multiple regression, variable selection 166—193
Multiple regression, variable-X case 130—137 140—143
Multiple regression, variance inflation factor 149
Multiple regression, weighted regression 148
Multiple regression, what to watch for 157—160 191—192
Multivariate analysis, definition 3
Multiway frequency tables 411 412—414 421—437
N number of cases, sampling units 13
Nominal variables 14—15 72—74
Normal distribution 54—55 131
Normal probability plots 57—58 108
Normality 57—58 62—63 108
Normality, normal probability plots 57—58 108
Normality, tests 62—63
Odds 284
Odds ratio 286—287 421
Ordinal variables 15 74
Outliers 38—39 104—108 144—145 331 347 376 389
Outliers in X 106—107 144
Outliers in Y 105—106 144
P number of variables 13
Package programs 23—28
Paired data 115
Partial regression plots 189
Partial residual plots 190
Percentiles 74
Poisson distribution 59
Polynomial regression 146—147
Posterior probabilities 258—259
Power transformations 53 59—62
Prediction intervals 93 130
Principal components 8 330—353
Principal components, characteristic roots 335
Principal components, coefficients 333—335
Principal components, computer programs 348—350
Principal components, correlation 338—339
Principal components, cumulative percentage variance 341—343
Principal components, definition 333
Principal components, eigenvalues 335—336 341—343
Principal components, eigenvector 336
Principal components, ellipse of concentration 335
Principal components, interpretation of coefficients 334—335 344
Principal components, latent root 335
Principal components, multicollinearity 345—347
Principal components, normality 331
Principal components, number of components 337 341—344
Principal components, outliers 331 347
Principal components, reduction of dimensionality 337
Principal components, regression analysis 345—347
Principal components, scree plots 337
Principal components, shape component 345
Principal components, size component 345
Principal components, standardized x 338—340
Principal components, tests of hypotheses 345
Principal components, variance of components 334
Principal components, what to watch for 350—354
Quartile deviation 74
RANGE 74
Ratio variables 16 75
Reflected variables 41
Regression 85—224
Regression, multiple linear 6 124—224
Regression, polynomial 146—147
Regression, principal component 345—347
Regression, ridge 214—219
Regression, segmented-curve 210—212
Regression, simple linear 6 85—123
Regression, spline 210—212
Regression, stagewise 190—191
Replacing missing data 199—201
Residuals 91 104—105 108 144—145 148
Ridge regression 214—219
ROC curves 295—296
Rotated factors 365—371
Saving data 40
Scale parameters 314
Segmented-curve regression 210—212
Selecting appropriate analysis 71—79
Serial correlation 108 145
Shape parameter 314
Shapiro — Wilk test 62
simple linear regression 6 85—123
Simple linear regression, adjusted Y 115
Simple linear regression, analysis of variance 101
Simple linear regression, assumptions 88—89 108—109
Simple linear regression, calibration 113—114
Simple linear regression, computer programs 115—116
Simple linear regression, confidence intervals 92
Simple linear regression, Cook's distance 107
Simple linear regression, correlation 94 97—99
Simple linear regression, covariance 93
Simple linear regression, descriptive 86
Simple linear regression, Durbin — Watson statistic 108
Simple linear regression, ellipse of concentration 96—98
Simple linear regression, fixed-X case 86 88—93 94—96
Simple linear regression, forecasting 114
Simple linear regression, h statistic 105—106
Simple linear regression, influence of observation 107
Simple linear regression, intercept 89—90
Simple linear regression, leverage 105—106
Simple linear regression, linearity 109
Simple linear regression, outliers 105—108
Simple linear regression, prediction intervals 93
Simple linear regression, predictive 86
Simple linear regression, regression line 88
Simple linear regression, regression through origin 111—112
Simple linear regression, residual analysis 102—106
Simple linear regression, residual degrees of freedom 91
Simple linear regression, residual mean square 91—92
Simple linear regression, residuals 91 103—104 115
Simple linear regression, robustness 108—109
Simple linear regression, serial correlation 108
Simple linear regression, slope 89
Simple linear regression, standard error 92 95
Simple linear regression, standardized coefficients 100—101
Simple linear regression, standardized residuals 105
Simple linear regression, studentized residuals 105
Simple linear regression, tests of hypotheses 94—95 101
Simple linear regression, transformations 109—111
Simple linear regression, variable-X case 86 93—94 96—100
Simple linear regression, weighted least squares 112
Simple linear regression, what to watch for 117—118
skewness 63
Spline regression 210—212
Square root transformation 53 59
Stagewise regression 190—191
Standardized regression coefficients 100—101 141 213
Standardized residuals 105
Stepwise selection 175—181 274—275 290—291 429—430
Stevens's classification system 13—14 72—78
Stevens's classification system, selecting analysis 72—78
Studentized residuals 105
Subset regression 181—184
Suggested analyses 76—78
Survival analysis 7—8 306—329
Survival analysis, accelerated life model 317—319
Survival analysis, computer programs 324—326
Survival analysis, Cox versus log-linear regression 320—322
Survival analysis, Cox versus logistic regression 322—324
Survival analysis, Cox's proportional hazards model 319—320
Survival analysis, cumulative death distribution function 311—313
Survival analysis, death density function 311—312
Survival analysis, exponential distribution 314—316
Survival analysis, hazard function 312 314—315
Survival analysis, log-linear regression model 317—319
Survival analysis, log-linear versus Cox's model 320—322
Survival analysis, proportional hazards model 319
Survival analysis, scale parameter 314
Survival analysis, shape parameter 314
Survival analysis, survival function 311—314
Survival analysis, T-year survival rate 308—309
Survival analysis, Weibull distribution 314—317
Survival analysis, what to watch for 326—327
Testing regression planes 138 150—153
Tolerance 149
Transformations 39—40 48—64 109—111 145—146
Transformations in multiple regression 145—6
Transformations in simple linear regression 109—111
Transformations, assessing need 63—64
Transformations, common transformations 48—53 109—111
Transformations, data manipulation 39—40
Transformations, graphical methods 54—62 109—111
Transformations, logarithmic 49—53 111
Transformations, normal probability plots 55—58
Transformations, power 53 59—62
Transformations, square root 50 53
Variable definition 12
Variance inflation factor 149
Weighted least squares 112 148
Ðåêëàìà