Авторизация
Поиск по указателям
Cajori F. — An introduction to the modern theory of equations
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: An introduction to the modern theory of equations
Автор: Cajori F.
Аннотация: The main difference between this text and others on the same subject, published in the English language, consists in the selection of the material. In proceeding from the elementary to the more advanced properties of equations, the subject of invariants and со variants is here omitted, to make room for a discussion of the elements of substitutions and substitution-groups, of domains of rationality, and of their application to equations. Thereby the reader acquires some familiarity with the fundamental results on the theory of equations, reached by Gauss, Abel, Galois, and Kronecker.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1919
Количество страниц: 239
Добавлена в каталог: 07.12.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Abel 233
Abelian equations 210
Abelian groups 210
Adjunction 135 151 219
Algebraic numbers 136
Algebraic solutions 60 219
Algebraic solutions, of cubic and quartic 68
Angle, trisection of 207 208
Bachmann 206
Ball 233
Beman, W. W. 206
Binomial equations 74 219
Biquadratic see Quartic
Bjerknes, C. A. 233
Budan 50
Burkhardt 233
Burnside and Panton 79 233
Cantor 233
Cardan’s formula 69
Carvallo, M. E. 67
Cole, E. N. 189
Complex roots 6 42 58 67 232
Composite sub-groups 123
Conjugate sub-groups 122
Constructions by ruler and compasses 202
Continuity of 25
Cross-ratio 100 127
Cube, duplication of 207
Cubic, algebraic solution 68
Cubic, cyclic 196
Cubic, equation of squared differences of 38
Cubic, irreducible case 69 208
Cubic, nature of roots 41
Cubic, reducing cubic 72
Cubic, removal of second term 36
Cyclic equations 187 196 198 220
Cyclic function 115 127 128 133
Cyclic group 115 128 132 133
Cyclotomic equations 142 198
De Moivre’s Theorem 24
Delian problem 207
Descartes 50
Descartes’ Rule of Signs 7 50
Dialytic method of elimination 95
Discriminant 110
Discriminant, of 97
Discriminant, of cubic 40
Discriminant, of quadratic 97
Discriminant, of quartic 59
Division of the circle 75 203—206
Domain, conjugate 143
Domain, defined 134
Domain, degree of 142
Domain, Galois 153
Domain, normal 142 150
Domain, primitive 144
Domain, substitutions of 160
Duplication of the cube 207
Easton, B. S. 233
Eink 233
Eisenstein’s theorem 141
Eliminants 92
Equal roots 21 53 142
Equations, Abelian 210
Equations, algebraic 2
Equations, algebraic solution of 219
Equations, binomial 74 219
Equations, cubic 36 38 41 68 69 72 196 208
Equations, cyclic 187 220
Equations, cyclotomic 142
Equations, irreducible 137
Equations, melacyclic 223
Equations, quadratic 184
Equations, quartic 185
Equations, quintic 186 227 229 232 233
Equations, reciprocal 33
Euler’s cubic 71
Euler’s method of elimination 94
Euler’s solution of quartic 71
Fine, H. B. 233
FOURIER 50
Function, alternating 115
Function, cyclic 115 127 128
Function, def 1
Function, derived 18
Function, resolvents of Lagrange 129
Function, Sturm’s 50
Function, symmetric 13 84 114
Function, “belongs to 115 124 125
Galois 143 176 233
Galois’ theory of numbers 134
Galois’ theory of numbers, determination of 169
Galois’ theory of numbers, domain 153
Galois’ theory of numbers, groups 164
Galois’ theory of numbers, reduction of 174 178
Galois’ theory of numbers, resolvent 155 156
Gauss 26 206
Graphic representation 15 23 75
groups 112
Groups, Abelian 210
Groups, alternating 115
Groups, composite 123
Groups, cyclic 115 128 132 133
Groups, degree and order of 113
Groups, Galois 164
Groups, index of 122
Groups, list of 118 119
Groups, normal sub-groups 122 124
Groups, primitive and imprimitive 110
Groups, simple 122
Groups, sub-groups 120
Groups, symmetric 114
Groups, transitive and intransitive 116
hermite 137
Historical references 233
Homographic transformation 99
Horner’s method 63
Imaginary roots 6 42 58 67 232
Imprimitive group 116 127
Invariant sub-groups 122
Irreducible case in cubic 69 208
Klein, F. 206 233
kronecker 187 233
Lagrange 233
Lagrange, resolvents of 129
Lagrange, theorem of 176
Lemma 138
Lindemann 137
Marie 233
Matthiessen, L. 186
McClintock, E. 67 230
Metacyclic equations 223 227
Miller, G. A. 233
Moritz 26
Multiple roots 21 53 142
Netto 189 218 228 229
Newton 50
Newton’s formula for sums of pow¬ers 84
Newton’s method of approximation 66
Normal domain 142 145 150
Normal equations 149 151
Normal sub-groups 122
Normal sub-groups, of prime index 124
Numbers, algebraic 136
Numbers, conjugate 144
Numbers, primitive 144 147
Numbers, transcendental 137
Panton see Burnside and Panton
Picard 233
Pierpont, J. 233
Primitive congruence roots 199
Primitive domains 144 147
Quadratic equation 184
Quartic, cyclic 198
Quartic, Euler’s solution 71
Quartic, groups of 172 173
Quartic, in the Galois theory 185
Quartic, nature of roots 56
Quartic, removal of second term 37
Quartic, symmetric functions of roots 91
Quartic, when solvable by square roots 72
Quintic 186 227 229 232 233
Radicals, solution by 60
Reciprocal equations 33
Reciprocal equations, depression of 81
Reducibility 134 135 139
Reducing cubic 72
Regular polygons, inscription of 20
Resolvents of Lagrange 129
Resultants 92
Rolle’s Theorem 49
Roots 2
Roots, complex 6 42 58 67 232
Roots, fractional 61
Roots, fundamental theorem 26
Roots, incommensurable 61
Roots, integral 62
Roots, multiple or equal roots 21 53 142
Roots, of unity 76 198
Roots, primitive 78
Roots, primitive congruence roots 199
Roots, reciprocal 33
Ruffini, P. 233
Runge, C. 229
Self-con juga/te sub-groups 122
Simple groups 122
Smith, D. E. 206
Solvable equations 223
Sturm 50
Sturm’s Theorem 50 51
Sturm’s theorem, applied to quartic 56
Sub-groups 120
Sub-groups, index of 122
Sub-groups, of prime index 124
substitution groups see Groups
Substitutions 104
Substitutions, cyclic 107
Substitutions, even and odd 111
Substitutions, identical 106
Substitutions, inverse 106
Substitutions, laws of 105
Substitutions, product of 105
Sylvester 50
Sylvester’s method of elimination 95
Symmetric functions 13 84 114
Symmetric functions, elimination by 93
Symmetric functions, fundamental theorem 87
Symmetric group 114
Synthetic division 3
Taylor’s Theorem 19
Transcendental numbers 137
transpositions 109
Trigonometric solution of binomial equations 74 82 83
Trigonometric solution of irreducible case 70
Trisecting an angle 207 208
Tschirnhausen’s transformation 99 102
Unity, primitive roots of 78
Unity, roots of 76 198
Waring 50
Weber, H. 29 134 228 231
Zeuthen 233
Реклама