Авторизация
Поиск по указателям
Fröman N., Fröman P.O. — JWKB approximation: contributions to the theory
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: JWKB approximation: contributions to the theory
Авторы: Fröman N., Fröman P.O.
Аннотация: The book contains a rigorous treatment of the one-dimensional JWBK-approximation. Using the ideas introduced by Zwaan and Kemble as a starting point we develop a method for examining the properties of the JWKB-approximation which is powerful also in intricate and complicated applications. In the first place we have had quantal problems in mind and hence, in the main part of the book, we assume the coefficients of the differential equation considered to be real on the real axis. This assumption simplifies the treatment. There are, however, important applications, for instance in the theory of electromagnetic waves, where the reality condition is not fulfilled. It should therefore be pointed out that the general theory in chapters 3, 4, and 7, is not subject to the above mentioned restriction and that the method can be worked out also when the coefficients are complex.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1965
Количество страниц: 138
Добавлена в каталог: 06.12.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
a-coefficients see also “a-vector”
a-coefficients, definition of 15
a-coefficients, differential equations for 15
a-coefficients, limiting properties of 29 92 103—105 115—116
a-vector see also “a-coefflcients”
a-vector, definition of 16
a-vector, differential equation for 16
a-vector, integral equation for 16
Anti-Stokes' line 60
Asymptotic approximation method 1
Asymptotic phase 125—130
Asymptotic phase, exact expressions for 126 128
Basic Estimates 26—27
Bethe 132
Birkhoff 3 4
Bohm 7 97
Brillouin 1
Carlini 1
Classical turning point 34
Classical turning point, in the generalized sense 34 80
Classically allowed region 34
Classically allowed region, in the generalized sense 34 80
Classically forbidden region 34
Classically forbidden region, in the generalized sense 34 80
Connection formulae 1—3 6—8 83—89 97
Connection formulae, derivation of 83—86
Connection formulae, one-directional (one-sided) nature of 2 6—8 40 46 86—89 97
Current density 7 91
Epsilon, definition of 13
Estimates of the F-matrix chapters 4 6 7
F-functions, definition of 20
F-matrix, basic estimates of 26—27
F-matrix, definition of 16
F-matrix, determinant of 17—18
F-matrix, differential equation for 17
F-matrix, estimates of see “Estimates of the F-matrix”
F-matrix, integral equation for 17
F-matrix, inversion of 18
F-matrix, limiting properties of 27—29 92 103
F-matrix, multiplication rule for 21
F-matrix, series for 16 18—20
F-matrix, symmetry properties of 30—33
F-vector, definition of 20
Feshbach 7
GANs 1
Generalized classical turning point 34 80
good 94
Green 1
Harmonic oscillator, linear 109
Harmonic oscillator, three-dimensional 120—125
Heading 1 3 4 7 88 97
Hecht 14
Hydrogen-like ion 117—120 131—132
Jeffreys, B.S. 1 94
Jeffreys, H. 1 2 7 88 97
JWKB-approximation 1—2
JWKB-approximation, first order 11
JWKB-approximation, modified 4 110
JWKB-approximation, second order 10
JWKB-method see “JWKB-approximation”
Kemble 3—5 8 15 86 90 91 94 112
Kramers 1 112
Langer 2 6 86 88 97 112 113 130 131 133 134
Liouville 1
Liouville — Green approximation 1
Loewdin 14
Mayer 14
Merzbacher 7 51 97
Messiah 86
Miller 94
Morse 7
Mu-integral, -integral, definition of 26
O-symbol 2—3 45—46
Olver 3 23—25 27 35
Pauli 7
Phase-integral method 1
Potential barrier, overdense 34 43—51
Potential barrier, parabolic 51 59 91 94 99
Potential barrier, underdense 34 51—59
Potential well 102
Probability current 91
Quantization condition 105—109 115—116
Quantization condition, exact 106 108 116
Quantization condition, semi-classical 4 9 108—109 116 117 119 121—125
Reflection coefficient, approximate expressions for 94 101
Reflection coefficient, exact expressions for 93 99—100
Salpeter 132
Schiff 86
Schwarzian derivative 14
Seifert 2
Semi-classical quantization condition see “Quantization condition”
Stokes' constants 4
Stokes' line 60
Stokes' phenomenon 5 6 12 23 74
Symmetry relations 5 30—33
Transition point 34
Transmission coefficient, approximate expressions for 90—91 94 101
Transmission coefficient, exact expressions for 93 99—100
Turning point see “Classical turning point”
w(z), definition of 13
Wave function, exact expression for 20
Wentzel 1
WKB-method 1
Zwaan 3
Реклама