|
![blank](/z.gif) |
Авторизация |
|
![blank](/z.gif) |
Поиск по указателям |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
![Красота](/img/main/16.jpg) |
|
![blank](/z.gif) |
|
Walecka J.D. — Fundamentals of statistical mechanics |
|
![blank](/z.gif) |
Предметный указатель |
Vibrational energy, degrees of freedom and 106
Vibrational energy, freezing out of 209
Vibrational energy, hamiltonian for 200
Vibrational energy, partition function and 102f
Vibrational energy, quantum mechanics and 105
Vibrational energy, radial 208
Virial theorem 80—91
Virial theorem, Euler’s theorem and 93
Virial theorem, hamiltonian and 83
Virial theorem, ideal gas and 85
Virial theorem, mean value and 94
Virial theorem, non-ideal gas and 85—92
Volume elements 15 18
Volume elements, canonical transformation 26
Volume elements, defined 24
Volume elements, factored 75
| Volume elements, in quantum phase space 169 (see also “Liouville’s theorem”)
Volume elements, invariance of 19f
Volume elements, time development of 17
Wall potential 5 96 75 80f 83
Wave equation 140
wave number 124
Wave number, maximum 124f 128
Wave number, orthonormal vectors for 135f
Wave number, periodic boundary conditions and 127 134
Wave number, wavelength and 124
wavefunction 157ff 195 237
Wavefunction, distribution function and 173
Wavefunction, expansion of 160f 162 179
Wavefunction, symmetry and 206
Weiss theory 222f
Zero-point energy 199
|
|
![blank](/z.gif) |
Реклама |
![blank](/z.gif) |
|
|