Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Young R.M. — An Introduction to Nonharmonic Fourier Series
Young R.M. — An Introduction to Nonharmonic Fourier Series



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: An Introduction to Nonharmonic Fourier Series

Автор: Young R.M.

Аннотация:

An Introduction to Non-Harmonic Fourier Series is a widely known and highly respected classic textbook.Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1980

Количество страниц: 246

Добавлена в каталог: 05.12.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Korobeinik, Ju.F.      221 222 226 227 229
Kothe, G.      208 229
Krein — Milman — Rutman theorem      39 209
Krein, M.G.      46 209 219 225 228 229 230
Krotov, V.G.      204 230
Kwapien, S.      204 230
l.i.m.      see “Limit in mean”
Lagrange interpolation series      150—151 176 219
Laguerre's theorem      79
Landau's theorem      218
Landau, H.J.      218 230
Legendre polynomials      15
Legendre's duplication formula      79
Lerer, JL.E.      209 230
Levin, B.Ja.      210 219—222 230
Levinson's theorem, on completeness of exponentials in $C[-\pi D, \pi D]$      117 216
Levinson's theorem, on completeness of exponentials in ${L}^{p}[-\pi, \pi]$      118 216
Levinson's theorem, on density and the completeness radius      138 218
Levinson's theorem, on equiconvergence of ordinary and non-harmonic Fourier series      224
Levinson's theorem, on exponentials close to the trigonometric system      119 122 216
Levinson, N.      90 111 143 210 213—218 224 230
Limit in mean      199
Lin, B.      209 230
Lindelof, E.      54 212 231
Lindenstrauss, J.      203 205 207 208 230
Linear operator      see “Operator”
Linked      130
Littlewood, J.E.      158 220 229
Liusternik, L.A.      209 229
Lorch, E.R.      208 230
Lorentz, G.G.      205 230
Luxemburg, W.A.J.      213 230 231
Lyubarskii, J.L      220 222 230
Malliavin, P.      142 218 22(5
Marcinkiewicz, J.      204 231
Markushevich, A L      44 210 231
Marti, J.T.      203 204 231
Martirosjan, V.M.      222 231
Maximum modulus function      62
Maximum principle      62 80 95 96 174
Mean-value formula, for analytic functions      17
Mean-value formula, for harmonic functions      59
Measurable sequence      138
Meletidi, M.A.      206 209 228 231
Miintz, C.H.      205 213 231
Milman, D.P.      209 230
Minimal      28 130
Minimum modulus      211 212
Mittag — Leffler function      68
moment      21 146 219
Moment problem      146—153 219
Moment problem, relation to bases      169—171 222
Moment sequence      146 186
Moment space      146 154 169
Moment space, and equivalent sequences      167—170
Moment space, of a Riesz basis      148
Morris, P.      205 227
Muckenhoupt condition      223
Muentz's Theorem      91 93 213
Natanson, LP.      219 257
Natural basis      2 3 7
Nehari, Z.      207 231
Neuwirth, J.H.      209 228
Neville, C.W.      220 231
Nonharmonic Fourier frame      185
Nonharmonic Fourier series      42 209 221
Nonharmonic Fourier series, equiconvergence with ordinary Fourier series      197—201
Nonharmonic Fourier series, pointwise convergence      197—201
Normal basis      26 207
Nudelman, A.A.      219 230
O'Hara, P.J.      213 257
Onto mapping      182
Open mapping theorem      30 188
Operator of finite rank      41
Operator, bounded from below      36 157 186
Operator, compact      40 41 45
Operator, Hilbert — Schmidt      45 51
Operator, of finite rank      41
Operator, positive      34 48
Operator, square root of      34
Order      62—68
Order, formula for      64
Order, in terms of Taylor coefficients      67
Order, of a canonical product      69
Order, of a derivative      67
Order, of a product      67
Orlicz's theorem      208
Orlicz, W.      208 231
Orthogonal      13 206
Orthogonal polynomials      206
Orthogonal system      26
Orthonormal basis      6
Orthonormal basis, for ${A}^{2}$      11
Orthonormal basis, for ${H}^{2}$      10
Orthonormal basis, for ${l}^{2}$      7
Orthonormal basis, for ${L}^{2}[-\pi, \pi]$      7
Orthonormal basis, for ${L}^{2}[0, \pi]$      14
Orthonormal basis, for P      106
Orthonormal basis, stability of      see “Stability”
Orthonormal sequence      14 15
Oskolkov, V.      222 231
Ostrovskii, I.V.      230
Paley — Wiener space      19 105—109 112 126 149 215
Paley — Wiener stability criterion      38 42 48 209
Paley — Wiener theorem, on finite Fourier transforms      100—105 214
Paley — Wiener theorem, on minimal sets of complex exponentials      130 217
Paley — Wiener theorem, on stability of bases      38 41 209
Paley, R.E.A.C      38 42 111 139 206 209 213—217 219—221 223 257
Parseval's identity      6 9 12 106
Parseval's identity, generalized      7
Partial sum operator      24
Partial sum operator, adjoint of      27
Pavlov, B.S.      223 231
Pelczynski — Singer theorem      208
Pelczynski, A.      203—205 208 226 230 231
Perturbation of a basis      see “Stability”
Peterson, D.R.      218 257
Phragmen — Lindeloef method      80—87
Phragmen — Lindeloef theorem      80 212
Phragmen, E.      212 257
Plancherel — Polya theorem, on an inequality for functions in ${E}_{\tau}^{p}$      93 214
Plancherel — Polya theorem, on differentiation in ${E}_{\tau}^{p}$      99 214
Plancherel's Theorem      100 106 195
Plancherel, M.      94 212 214 257
Point-evaluation functional      16
Pointwise convergence, of Fourier series      9 197 201
Pointwise convergence, of nonharmonic Fourier series      197—201
Poisson summation formula      105
Polar decomposition      48
Pollard, H.      207 215 226 231
Polya maximum density      138 143
Positive matrix      19
Positive operator      34 48
POVZNER, A.      232
Powers, completeness of      21 22
Primary factors      55
Property SAIN      205
Quadratic form      157 159
Quadratically close      45 46 51
Rahman, Q.l.      213 228
Redheffer's theorem      137 218
Redheffer, R.M.      212 215—218 225 232
Reflexive Banach space      28 204
Reproducing kernel      15—19 206
Reproducing kernel, Bergman kernel      18
Reproducing kernel, for P      107
Reproducing kernel, Szegoe kernel      16 158
Retherford, J.R.      209 210 232
Riemann — Lebesgue lemma      200
Riesz (F.and M.) theorem      215
Riesz basis      30—37 169 188 208 221
Riesz basis, of complex exponentials      42 148 151 170—177 181 191 192 196—201
Riesz representation theorem      20 53 91 152
Riesz — Fischer sequence      146 153—161 180 220
Riesz — Fischer sequence, of complex exponentials      162—166
Riesz — Fischer theorem      7
Riesz, F.      34 48 206 210 220 228 232
Rogers, C.A.      204 228
Rosenbaum, J.T.      220 232
Rosenthal, H.P.      207 229
Rota, G.C      210 226
Royden, H.L.      205 232
Ruckle, W.H.      209 232
Rudin, W.      94 97 205 213—215 232
Russell, D.L.      210 252
Rutman, M.A.      209 230
Sampling theorem      107
Schaeffer, A.C      212—214 222—224 227
Schaefke, F.W.      210 232
Schafke's theorem      50 210
Schauder basis      1 207
Schauder's system      3 204
Schauder's theorem      4
Schauder, J.      1 206 252
Schmeisser, G.      213 228
Schonefeld, S.      204 232
Schur's lemma      159
Schwartz, J.T.      206 219 220 227
Schwartz, L.      139 213 215 217 218 232
Sedleckii's theorem, on equiconvergence of ordinary and non-harmonic Fourier series      223
Sedleckii's theorem, on Fourier — Stieltjes transforms      177 222
Sedleckii, A.M.      217 218 220—224 232 233
Self-adjoint operator      186 189
Self-adjoint operator, formula for norm      48
Sengupta, A.      210 233
Separable      2 6
Separated sequence      98 179—181 184 221
Sequence, $\omega$-independent      40 46
Sequence, Bessel      see “Bessel sequence”
Sequence, closed      see “Complete sequence”
Sequence, complete      see “Complete sequence”
Sequence, density of      see “Density”
Sequence, equivalent sequences      167 170
Sequence, free      28
Sequence, fundamental      see “Complete sequence”
Sequence, independent      28
Sequence, interpolating      see “Interpolating sequence”
Sequence, measurable      138
Sequence, minimal      28 130
Sequence, quadratically close sequences      45 46 51
Sequence, Riesz — Fischer      see “Riesz — Fischer sequence”
Sequence, separated      98 179—181 184 221
Sequence, symmetric      139 148 151
Sequence, total      see “Complete sequence”
Sequence, uniform density      1 212 214
Sequence, uniformly minimal      160
Set of uniqueness      112 174
Shah, S.M.      211 233
Shannon's sampling theorem      107
Shannon, C.E.      107 233
Shapiro, H.S.      160 206 213 220 233
Shields, A.L      160 220 255
Shisha      0. 215 257
Shohat, J.A.      219 255
Simon, P.      204 208 227
Sine type, function of      171—174 224
Sine type, function of, zeros of      173 174
Singer, I.      203 205 208 209 221 230 231 233
Sjoelin, P.      204 208 227
Square root, of an operator      34
Stability, of bases in Banach spaces      37—41 209
Stability, of complete sequences in Banach spaces      209
Stability, of complete sequences of complex exponentials      131—137 217 218
Stability, of frames      191—196
Stability, of interpolating sequences      179—184
Stability, of nonharmonic Fourier series      190—197
Stability, of orthonormal bases in Hilbert space      41—51
Stability, of Riesz bases of complex exponentials      190—197
Stability, of the trigonometric system      42—44 118—122 216
Stepanoff, W.      206 233
Stieltjes, T.J.      219 233
Stray, A.      222 233
Sturm — Liouville series      47 210
Sturm — Liouville system      46
Subharmonic function      94 95
Summability      201
Svedenko, S.V.      220 233
Symmetric sequence      139 148 151
Sz.-Nagy, B.      34 48 206 210 232
Szasz, O.      201 213 216 233
Szego, G.      16 206 212 213 257 233
Szegoe kernel      16 158
Talaljan, F.A.      233
Tamarkin, J.D.      219 233
Taylor, A.E.      36 186 233
Taylor, B.A.      220 233
Titchmarsh, E.C      75 83 206 210—212 214 220 233
Total sequence      see “Complete sequence”
Trigonometric moment problem      145 170 219
Trigonometric moment problem, generalized      148
Trigonometric polynomial, approximation by      8
Trigonometric polynomial, inequality for      86
Trigonometric system      7 8 20 112—117 203
Trigonometric system, completeness of      8 20
Trigonometric system, stability of      42—44 118—122 196 216 218 223 224
Turku, H.      220 233
TYPE      71
Tzafriri, L.      203 207 208 230
Unconditional basis      3 13 204
Unconditionally convergent series      2 204
Uniform approximation      3 129
Uniformly minimal      160
Uniqueness, of an entire function      90—92 105 107 108 111 216
Unitary operator      48
Upper density      138 143
Valiron, G.      210 233
Verblunsky, S.      224 233
Vitali's theorem      14 206
Vitali, G.      206 234
Wallen, L.J.      210 234
Wallis's product      58
Walsh, J.L.      205 207 223 234
Weak basis      203
Weak convergence      136
Weaver, W.      107 233
Weierstrass primary factors      55
Weierstrass's approximation theorem      3 8 21 113 205
Weierstrass's approximation theorem, generalizations of      205
Weierstrass's factorization theorem      54 55 211
Weierstrass, K.      54.205 211 234
Weighted interpolation      158
Whittaker, E T.      107 234
Whittaker, J.M.      215 234
Wiener, N.      38 42 111 139 206 209 213—217 219—221 223 25/
Williams, D.L.      220 228 233
Wolibner's theorem      205
Wolibner, W.      205 234
Young, R.M.      215 218—223 234
Zaharjuta, V.P.      222 227
Zeros, of an entire function, and growth      59—62 64—66 69—73 75 85—93
Zeros, of an entire function, density of      90 213
Zeros, of an entire function, functions of nonintegral order      75 76
Zeros, of an entire function, real      79
Zippin, M.      207 208 229 230
Zygmund, A.      206 234
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте