Let p, n ∈ ℕ with 2p ≥ n + 2, and let I a be a polyharmonic spline of order p on the grid ℤ × aℤ n which satisfies the interpolating conditions
![$I_{a}\left( j,am\right) =d_{j}\left( am\right) $](/math_tex/767476e4b954be982f2bd3361929925f82.gif)
for j ∈ ℤ, m ∈ ℤ n where the functions d j : ℝ n → ℝ and the parameter a > 0 are given. Let
![$B_{s}\left( \mathbb{R}^{n}\right) $](/math_tex/7df2521ce742b5a18415d3a93683a64282.gif)
be the set of all integrable functions f : ℝ n → ℂ such that the integral
![$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi$](/math_tex/83cd5afaeeece19c48c644cbbac7a7f982.gif)
is finite.
The main result states that for given
![$\mathbb{\sigma}\geq0$](/math_tex/7993e8cd6de8aaac4159f31cfe9e72a982.gif)
there exists a constant c>0 such that whenever
![$d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,$](/math_tex/90e3b41dcb483fcf3ce94796d703e8c182.gif)
j ∈ ℤ, satisfy
![$\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right)$](/math_tex/887ab9ef839f501c9971f3b35e94e09d82.gif)
for all j ∈ ℤ there exists a polyspline S : ℝ n+1 → ℂ of order p on strips such that
![$[$] \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right)$](/math_tex/94b7be4693bad8925b56fd0c1da24eb282.gif)
[$]
for all y ∈ ℝ n , t ∈ ℝ and all 0 < a ≤ 1.