Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Seress Á. — Permutation Group Algorithms
Seress Á. — Permutation Group Algorithms

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Permutation Group Algorithms

Автор: Seress Á.

Аннотация:

Permutation group algorithms are indispensable in the proofs of many deep results, including the construction and study of sporadic finite simple groups. This work describes the theory behind permutation group algorithms, up to the most recent developments based on the classification of finite simple groups. Rigorous complexity estimates, implementation hints, and advanced exercises are included throughout. The central theme is the description of nearly linear time algorithms, which are extremely fast both in terms of asymptotic analysis and of practical running time. The book fills a significant gap in the symbolic computation literature for readers interested in using computers in group theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 264

Добавлена в каталог: 20.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$1^{m_{1}}\cdots n^{m_{n}}$      228
$<U^{G}>$      7
$Alt(\Omega)$      9
$Aut(\mathcal{X})$      11
$A\times B$      8
$A_{n}$      9
$C_{G}(U)$      7
$C_{n}$      8
$G(\mathcal{P})$      201
$GL_{d}(q)$      8
$G\wr H$      10
$G^{[i]}$      55
$G^{\Delta}$      9
$G_{(\Delta)}$      9
$G_{\delta}$      10
$G|_{\Delta}$      9
$H\lesssim G$      7
$H\triangleleft\triangleleft G$      7
$N(k, \Pi, d_{1}, \ldots, d_{l})$      231
$N_{G}(U)$      7
$N_{n}(x)$      231
$OP(\Omega)$      207
$O^{\infty}(G)$      8
$O^{\tilde}(f)$      11
$O_{p}(G)$      8
$O_{\infty}(G)$      8
$Sym(\Omega)$      9
$S_{n}$      9
$T_{n}(x)$      231
$\alpha^{G}$      9
$\Delta^{g}$      9
$\mathbb{N}$      10
$\mathbb{R}$      10
$\mathbb{Z}$      10
$\mathcal{R}(\Pi)$      209
$\mathcal{T}(t)$      202
$\mathcal{X}(V, \mathcal{E})$      11
$\mathcal{X}(\alpha, \beta)$      212
$\mu$      94 228
$\Omega(f)$      11
$\omega^{G}$      9
$\Omega_{\mathcal{P}}(\gamma_{1}, \ldots, \gamma_{l-1})$      205
$\Pi \wedge \Sigma$      208
$\prod A_{i}$      8
$\Theta(f)$      11
$\Theta(H)$      210
$\varphi((\gamma_{1}, \ldots, \gamma_{l}))$      202
$\Xi$      94 228
()      9
<S>      7
A(m, x)      109
Ackerman function      109 176
Aut(G)      7
Automorphism group      7 129 131 144
Automorphism group of a graph      11 207
Backtrack      53 169 201—217
Base      50 55
Base change      82 97 112 116 134 143 190 204 205
Base, $\mathcal{R}$-base      210
Base, nonredundant      55
Black-box f-recognizable      192 193 195 196 198
Black-box group      16-47 135 139 192 193 195 228 235—244
Block      9 50 100 107—110 112 113 121 142 190 214
Block homomorphism      81
Block system      9 121 126 128 142 176 178
Block system, maximal      9 191
Block system, minimal      9 132 149 247 253
Block, maximal      9 144 146
Block, minimal      9 101—107 112
Cayley graph      12 26 64
Center      7 50 120 133
centralizer      7 53 117—124 130 134 149 150 152 158 169 172 205 216
Chernoff's bound      31 33—35 37—39
Chernoff's bound, basic-type application      32
Chief series      49 155
Closure      83 111
Closure, G-closure      7 23 38 44 83
Closure, normal closure      7 23 83 111 116 138 140 155 250 251
Collection      17 165
Commutator      8
Complement      7 182
Composition series      50 125—155 158 165 193 197 199
Conjugacy class      172 214—216
Constructive recognition      168 192 193 195 196 227 235—246
Coordinatization      167 169—171 173
Core      8 50 124 180
Core, p-core      8 51 138 157—159
Coset enumeration      184—186
cube      64 67 69
Cube, nondegenerate      65
Cycle type      228
Degree of a graph or hypergraph      11
Degree of a permutation      9
Degree of a permutation group      9
Derived series      8 24 38 49 84 159
Diag(H)      129
Diagonal subgroup      129 131 144 160
Direct product      8 119—122 129 141 147 216
Direct product, projection      8 130
Directed graph      11
Directed graph, out-degree      11
Directed graph, strongly connected      12 112 251
Directed graph, underlying graph      12 219
Double coset      53 203
e(A)      36
Fix(g)      117
Forest      12 219 249
Frattini argument      170 182
Frobenius group      10 133 137 148 160
G'      8
GF(q)      8
Graph      11
Graph, component      12 112
Graph, connected      12
Hall subgroup      182
Hash function      22 142
Hypergraph      11 87
Hypergraph, uniform      11 87
Inn(G)      7
Labeled branching      218-225
Labeled branching, represents a group      220
Labeled branching, represents a transversal      220
Las Vegas algorithm      14
Local expansion      72
Lower central series      8 24 38 49 84 180
L[i]      12
Markov chain      25 27 215 217
Markov chain, aperiodic      25 28 47 215
Markov chain, irreducible      25 28 215
Markov chain, period of      25 47
Markov chain, stationary distribution of      25 28 215
Markov chain, transition probability      25 28 47 215
Monte Carlo algorithm      13
Nearly linear-time algorithm      51
Nearly uniform distribution      24 29
Nilpotent group      175—182
Nonconstructive recognition      227
normalizer      7 134 137 142 154 170 211
o(f)      11
Orbit      9 18 36 49 60 65 102 112 120—122 141 143 144 154 173 179 189 190 252
Orbit, fundamental      56 83 97 99 182 204 223
Orbital graph      212 251
Ordered partition      207
Ordered partition, cell of      207
Ordered partition, refinement      208
Out(G)      7
Out-degree      11
Path      12 219 252
Perfect group      8 146
Permutation group as black-box group      93 135 138 139 192 193 197
Permutation isomorphism      10 95 119 127 128 140 142 146 173
Polycyclic generating sequence      162 163 165 166 181
Power-conjugate presentation      165—166
Presentation      49 112 165 184 192 194 197—200 227 236 237 244 247 250
Primitive group      9 95 100 126 129—149 160 225 251
Prob(A|B)      30
Product replacement algorithm      27
Random prefix      40
Random subproduct      30—40 73 77 84 88 92 182 245 246 249
Recognition      see "Constructive recognition"
Regular graph      11
Regular group      10 78 113 129 133 137 138 146 150 154 160 161
Schreier generator      58 59 62 73 76—78 86 88 92 97 177 198 222 246 249
Schreier tree      56 65 67 70 72 75 77 82 85 88 91 97 99 101 106 118 128 135 136 155 163 190
Schreier tree, shallow      114
Schreier vector      see "Schreier tree"
Schreier — Sims algorithm      59
Schur — Zassenhaus theorem      182
Search tree      202
Semiregular group      10 117 123 130
SGS      50 55
SGS, construction      59 63 70 72 75 86 87 90 99 162 193 222 246
SGS, testing      64 77 186 190 193
Siftee      56
Sifting      56
Sifting as a word      86 88 91 128 156 166 167 187
Sifting in a labeled branching      221 223 224
Small-base group      51
Soc(G)      8
Socle      8 51 129 147—149 152—154 161
Solvable radical      8 157—159 216
Solvable residual      8 150 152
Spreader      41
Stabilizer, pointwise      9 49 79 115 127 247
Stabilizer, setwise      10 53 145 176 206
Standard word      93
Straight-line program      10 192—194 197 199 200 227 239 240 243 244 250
Strong generating set      see "SGS"
Subdirect product      8 130 160
Subnormal      7 49 124 149 152 160 161 180
supp(g)      9
Support      9
Sylow subgroup      50 95 125 157 161 167—172 182 216
Transitive closure      219 220
Transitive constituent homomorphism      81
Transitive group      9 36 87 117
Transversal      8 56 57 59 65 82 101 118 218 220 246 247 249 253
TREE      12
Tree, breadth-first-search      19 65 68 113 157 187
Tree, rooted      12 108 111 202 219
Tree, rooted, children of a vertex      12
Tree, rooted, leaf      12
Tree, rooted, parent of a vertex      12
union-find data structure      108 113
Up-to-date SGS data structure      59 70 83 88 91
Upper central series      8 179—181
Valency      11
Walk      12 25 212 213 215
Walk, lazy random      26
Wreath product      10 119 122 129 160 226
[A, B]      8
[H, K]      8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте