Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Wen-Tsun W. — Mathematics Mechanization
Wen-Tsun W. — Mathematics Mechanization



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematics Mechanization

Автор: Wen-Tsun W.

Аннотация:

This book is a collection of essays centred around the subject of mathematical mechanization. It tries to deal with mathematics in a constructive and algorithmic manner so that reasoning becomes mechanical, automated and less laborious.
The book is divided into three parts. Part I concerns historical developments of mathematics mechanization, especially in ancient China. Part II describes the underlying principles of polynomial equation-solving, with polynomial coefficients in fields restricted to the case of characteristic 0. Based on the general principle, some methods of solving such arbitrary polynomial systems may be found. This part also goes back to classical Chinese mathematics as well as treating modern works in this field. Finally, Part III contains applications and examples.
Audience: This volume will be of interest to research and applied mathematicians, computer scientists and historians in mathematics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 420

Добавлена в каталог: 20.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Jacobian polset      c5d5. 6
Jade Mirror of Four Elememts, ( + 1303)      c1s1. 1 c1s1. c2s2.
Janet, M.      c4s4. 3
Jia Xian, fl. ( + 1023, +1050)      c1s1. 2
Joint (of robot)      c6s6. 5
Ju      c2s2. 3
KdV equation      c8s8. 5
Kepler equation      c8s8. 5
Kepler, J., ( + 1571, +1630)      c8s8. 5
Kepler’s laws      c8s8. 5
Kernel of tuple(s)      c4d1. 18 c4n1.
Kleinian geometry      c7s7. 1
Lagrange projection      c5d5. 7
Lagrange series      c8s8. 5
Lagrange, J. L., ( + 1736, +1813)      c5s5. 5
Lagrangian mulptiplier      c5d5. 3
Lagrangian polset      c5d5. 4
Leading coefficient (of pol)      c4d2. 4 c4n2.
Leading degree-tuple (of pol)      c4d2. 4 c4n2.
Leading monom (of pol)      c4d2. 4 c4n2.
Leading term (of pol)      c4d2. 4 c4d2.
Leading variable (of pol)      c3d3. 1
Least common multiple of tuple(s)      c4d1. 6 c4n1.
Length (of pol)      c3d3. 1
Li Chunfeng, fl. + 656      c1s1. 1
Li Ye, ( + 1192, + 1279)      c1s1. 1 c1s1. c2s2.
Liu - Zu Principle (= Zu Geng Principle)      c2s2. 3
Liu Hui, fl. +263      c1s1. 1 c1s1. c2s2.
Liu Hui’s 2 : 1 Principle      c2s2. 3
Liu Yi, fl. +12c      c1s1. 2
Lord Zhou, fl. -1122      c2s2. 3
Lower ordering      c3d3. 5 c3d3. c3d5. c3n5. c4d2. c4d1. c4d2. c4d2. c4d2. c4d2. c4d2. c4n2.
M-part      c4d3. 8
M-pol      c4d3. 6
M-product      c4d3. 5
Malfatti problem      c6s6. 3 c6e3.
Manipulator      c6d5. 1
Mathematical Treatise in Nine Chapters      c1s1. 1
Maxim of tuple-set(s)      c4d1. 11
Maxt      c6s6. 1
Mechanical geometry theorem-proving      c2s2. 2 c3e2. c7s7.
Mechanical system      c1s1. 1
Mechanizable      c2s2.2
Mechanization theorem      c2s2. 1
Mei Wengding, ( + 1633, +1721)      c2s2. 3
Membership problem      c4s4. 4
Method of Condensed Coefficients      c6s6. 1
Method of undetermined coefficients      c8s8. 5
Metric geometry      c7d1. 6
Mian      c1s1. 2
Miyaoka — Yau inequality      c5t3. 8
Modified Well-Ordering Principle      c3s3. 4 c3t4.
Monom      c4d2. 1
Morley theorem      c7el. 4
Motztkin polynomial      c8el. 1
MTP      c7s7. 1
MTP-Principle      c7s7. 1
Multiple of tuple(s)      c4n1. 3
Multiplier of tuple(s)      c4d1. 15 c4n1.
N-part      c4d3. 8 c4d3.12
N-pol      c4d3.9
Newton, I., ( + 1642, +1727)      c8s8. 1 c8s8.
Newton’s formulae      c8e1. 7
Newton’s laws      c8s8. 5
Nine Chapters or Nine Chapters of Arithmetic      c1s1. 1 c1s1. c2s2.
Non-contractible irreducible decomposition (of varieties)      c3d2. 15 c3t2. c3t2. c3d6.
Non-degeneracy condition      c2s2. 1 c3e2. c7s7. c7r1. c7s7.
Non-degenerate      c7s7. 1
Non-linear evolution PDE      c8s8. 5
Non-Linear Programming Problem      c8e2. 6
Non-multiplier of tuple(s)      c4d1. 15 c4n1.
Non-reduced      c3s3. 3 c3d3.
Non-trivial 8-triad configuration      c7e3. 1
Normal form (of oriented line)      c6d3. 5
Normal form (of pol)      c3s3. 3 c3d3. c4d2.
Normal form of a pol (= polynomial)      c4d2. 3
Normalized coordinates (of oriented line)      c6d3. 6 c6d3.
Object variety (of irreducible algebraic correspondence)      c5d2. 5 c5n2.
Oppositely oriented      c6d3. 3 c6n3. c6d3. c6n3.
Optimal      c5d5. 9
Optimal point      c5s5. 10
Optimal value      c5s5. 11 c5n5.
Optimization principle      c5s5. 5
Optimization Problem Π     c5s5. 5
Order of approximation      c6d2. 5
Order of tinies      c6d2. 4
Ordering      c3s3. 3 c4s4. c4s4.
Ordering of autoreduced set      c4dl. 10
Ordering of tuple(s)      c4d1. 8 c4n1. c4rl.
Ordering of tuple-set(s)      c4d1. 10
Ordinary geometry      c7d1. 7
Ordinary point      c3s3.1 c3d1.
Oriented angle      c7d2. 3 c7n2.1 c7r2.
Oriented circle      c6d3. 7
Oriented coordinates      c6d3. 4
Oriented line      c6d3. 2
Oriented radius      c6d3. 8
Oriented tangency      c6d3. 9 c6d3.10
Ostrowski theorem      c6t2.1
Out - In Complementary Principle      c1s1. 3 c2s2.
Pappus theorem      c7s7.1
Parametrization      c5d4 c5e4. c5e4.
Partial ascending set      c3d6. 1
Partial ordering of autoreduced polset      c4d2. 10
Partial ordering, of asc-sets or of triangulated sets      c3d3.12 c3d3.13
Partial ordering, of autoreduced polsets      c4d2.10
Partial ordering, of pols      c3d3. 5 c3d4.
Partial ordering, of polsets      c3d3.15 c3d5.
Pascal axiom      c7s7.1 c7d1.
Pascalian axiomatic system      c7d1. 4
Pascalian geometry      c7s7. 1
Pasch Theorem      c7e4. 3 c7e4.
Pathological healthy exact representation      c6d2. 6
Pathological monomial      c6d2. 6
Pieri - Giambelli Formula      c5pf3. 6
Place-valued decimal system      c1s1. 1 c1s1.
Planet motion      c6s6. 4 c8s8.
Pol (= polynomial)      c3s3. 2 c3d2.
Pol-number set (of a polset)      c3s3. 5 c3d5.
Pole (of rotation)      c7d2. 7
Pole curve      c8d3. 5
Pole point      c8d3. 4
Polset      c3s3. 2 c3d2.
Polynomial-equations solving      c1 c6
Poncelet Porism      c8s8. 5
Poncelet triangle      c8s8. 5
Poncelet, V., ( + 1789, +1867)      c8s8. 5
Positive-Negative Root-Extraction Shu      c1s1. 2
Positive-Negative Shu      c1s1. 2
Positively equivalent      c6d3. 1
Precision degree      c6d2. 2 c6d2.
Primitive element      c3s3. 1 c3dl. c3pp1.
Prismatic joint (of robot)      c6d5. 1
Product of tuple(s)      c4d1. 4
Projection (of affine space)      c5d5. 4
Projection (of ideal)      c4d4. 3 c4n4.
Projection (of quasi-variety)      c5s5. 4
Projection problem      c5s5. 4
Projection theorem      c5s5. 4 c5t4.
Projective completion of algebraic correspondence      c5d2. 4
Projective space      c3s3. 1 c3n1.
Projective variety      c3d2. 19 c3n2.
Proper subvariety      c3d2. 11
Pseudo-remainder      c3s3. 3 c3r3. c3ðð5.
Puma R-robot      c6d5. 16
Puma type robot      c6d5. 15
Puma560      c6d5. 17
Pure intersection theorem      c2s2. 1
Pyramid Problem      c8s8. 5
Pythagoras, fl. ( - 560, - 480)      c2s2. 1
Pythagoras’ theorem      c2s2. 1 c2e1.
Qin - Heron formula      c2s2. 3 c8e1.
Qin, Jiushao, fl. +1247      c1s1. 1 c1s1. c2s2.
Quadrilateral Convexity Theorem      c7e4. 6
Quartic Problem      c8e2. 4
Quasi-tangent space      c5d1. 6 c5d1. c5r1. c5t1.
Quasi-variety      c5d4. 3 c5r4.
Range (of robot)      c6d5. 6
Real algebraic variety      c5s5. 1
Real basis (of a real variety)      c5d1. 3 c8s8.
Real curve (or surface)      c8s8. 4 c8r4.
Real dimension (of a real variety)      c8s8. 4 c8r4.
Real variety      c5d1. 13 c5s5. c8s8.
Real-complete basis (of a real variety)      c5d1. 15 c8s8.
Reality conditions      c6d4. 4
Reduced      c3s3. 3 c3d3. c3d3. c4d2. c4d2.
Reduced autoreduced polset      c4d2. 9
Reduced Groebner basis      c4d2. 16
Reduced well-behaved basis      c4d3. 11
Reducible variety      c3s3. 2 c3d2.
Reduction      c4d2. 13
Reduction of autoreduced polset      c4d2. 13
Regular point      c8s8. 4
Regular zero (of irreducible asc-set)      c3d6. 6
Related points (in moving planes)      c8d3. 1
Remainder      c3s3. 3 c3d3. c3d3.
Remainder formula      c3s3. 3 c3d3.
Remainder in Ritt sense      c3d3. 6
Remainder-set      c3s3. 3 c3d3.
Replacement Rules      c3s3. 5
Rest      c4d2. 12 c4n2.
Rest formula      c4d2. 13
Restricted Tarski domain      c7d4. 1
Resultant      c3e2. 4 c3e2. c3r5.
Revolutory joint (of robot)      c6d5. 1
Rigid configuration      c6d4. 1 c6d4.
Ritt, J. F., ( + 1893, +1950)      c3s3. 3 c6s6.
Robot      c6d5. 1
Robot map      c6d5. 5
Root-extraction      c1s1. 2
Root-Extraction Basic Diagrams      c1s1. 2
Root-Extraction Shu      c1s1. 2
Root-extraction with zong      c1s1. 2
Rotation group      c3e4. 3 c3e5.
Same ordering      c3d3. 6 c3d3.13
Schubert cycle      c5d3. 2
Sea-Island Formula      c1s1. 1 c2s2.
Sea-Island or Sea-Island Mathematical Manuel      c1s1. 1
Secant theorem      c7e3. 4
Secondary trisector (of oriented angle)      c7d2. 6
Seidenberg technique      c7s7. 4 c7l4.
Separant (of pol)      c3d3. 4
Shang Gao, fl. ( - 1122)      c1s1. 1 c2s3.
Shi      c1s1. 1 c2s2.
Shu      c1s1. 1 c2s2.
Simple point (of irreducible variety)      c5d1. 9
Simple quasi-variety      c5d4. 5
Simson - Line Theorem      c7e2. 1
Sine-Sum Theorem      c8e2. 3
Singular hand-position (of robot)      c6d5. 7
Singular locus (of irreducible variety)      c5d1. 11
Singular point (of irreducible variety)      c5d1. 10
Singular position (of robot hand)      c6d5. 9
Soliton      c8s8. 5
Specialization      c3s3. 1 c3d1. c3nl. c3n1.
Specialization-Extension Theorem      c3pp1. 11 c3r2.
Square-root extraction      c1s1. 2
Square-Root Extraction Shu      c1s1. 2
Squared-remainder      c3d3. 18
Squared-Remainder Formula      c3d3. 18’
Steiner theorem      c7e2. 3
Suan shu      c1s1. 1
Subeliminant      c3s3. 5 c3d5.
Subeliminant Problem SE      c3s3. 5
Subrest      c4d2. 12
Subresultant      c3s3. 5 c3r5.
Subsidiary geometries      c7s7. 1
Sun-Height Formula      c1s1. 1 c2s2.
Surface-Fitting Problem SF      c8s8. 4
Syzygy      c4d4. 2
Syzygy ideal      c4d4. 5 c4n4.
Syzygy pol      c4d4. 4
Tangent space      c5d1. 8 c5r1. c5t1.
Tarski (Mechanization) Theorem      c1s1. 2 c7t1. c7s7.
Tarski domain      c7d1. 9
Tarski, A., ( + 1902, +1983)      c2s2. 2 c7s7.1 c7s7.4
Th$\acute{e}$bault - Taylor - Chou Theorem      c7r3. 10
TINY      c6d2. 4
Tiny order      c6d2. 4
Tiny part      c6d2. 2
Total multiple set of tuple(s)      c4d1. 16 c4d1. c4n1.
Triangulated set      c3s3. 3 c3d3. c6s6.
Trisector (of oriented angle)      c7d2. 5
Trivial asc-set      c3s3. 3 c3d3.
Trivial ascending set      c3d3. 9 cÇrÇ.
Trivial triangulated set      c3s3. 3 c3d3.
Tuple(s)      c4d1. 1
Tuple-Decomposition Theorem      c4t1. 9
Tuple-set(s)      c4s4. 1
Universal field      c3s3. 1 c3d1. c3rl.
Universal proof      c2s2. 1
Unordered Desarguesian geometry      c7d1. 2
Unordered metric geometry      c7d1. 6
Unordered Pascalian geometry      c7d1. 5
Variety      c3s3. 1 c3d2.
Variety-Decomposition Theorem      c3t2. 10 c3t6. c3d6.
Var[ ]      c3n6. 2
Verification      c3s3. 4 c3d4.
Vortex configuration      c6s6. 4 c6n4.
Vortex filament      c6s6. 4
Vortex Motion      c6s6. 4
Wang Hao, ( + 1921, + 1995)      c2s2.2
Wang Xiaotong, fl. 1626      c1s1. 1 c1s1.
Weak asc-set      c3s3. 3 c3d3.
Well-arranged basis      c4d2. 14
Well-arranged basis of an ideal      c4d2 14
Well-behaved basis      c4d3. 10
Well-behaved basis of an ideal      c4d3. 10
Well-Behaved Property      c4t3. 6
Well-ordering principle      c3s3. 4 c3t4. c3t4. c3t4. c6s6.
Whitney decomposition      c5t1. 15 c5d1.
Wintner conjecture      c6s6. 4
wsolve      c6s6. 1 c7t4. c8e2. c8e4. c8e4. c8e4.3
Xuan      c2s2. 3
Yang Hui, fl. ( + 1261, +1275)      c1s1. 1 c1s1.
Zassenhaus Problem      c8s8. 5
Zerlegungs-Aequivalenz      c2s2. 3
Zero      c1s1. 1 c3s3. c3d2. c3d2.
Zero-decomposition      c3s3. 5
Zero-Decomposition Theorem      c3s3. 5 c3t5. c3t5. c6s6.
Zero-equivalence      c3s3. 2 c3d2. c3n2.
Zero-set      c3s3. 2 c3d2.
Zero-structure      c3s3.4
Zero-tuple(s)      c4d1. 2 c4n1.
Zhang Cang, ( - 250, - 152)      c1s1. 1
Zhang Heng, ( + 78, +139)      c2s2. 3
Zhao Shang, fl. 3c      c1s1. 1 c1s1.
Zhou Bi (= Zhou Bi Mathematics Manuel)      c1s1. 1 c2s2.
Zhu      c1s1.1
Zhu Shijie, fl. ( + 1299, + 1303)      c1s1. 1 c1s1. c2s2. c3e3. c3e4. c3e4. c3e5. c6s6.
Zhui Shu (= Art of Mending)      c1s1. 1 c2s2.
Zong      c1s1. 2
Zong-fa      c1s1. 2
Zu Chongzhi, ( + 429, +500)      c1s1. 1 c1s1. c2s2.
Zu Geng Principle (= Liu - Zu Principle)      c2s2. 3
Zu Geng, fl. +5c      c1s1. 2
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте