|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Wen-Tsun W. — Mathematics Mechanization |
|
 |
Предметный указатель |
Jacobian polset c5d5. 6
Jade Mirror of Four Elememts, ( + 1303) c1s1. 1 c1s1. c2s2.
Janet, M. c4s4. 3
Jia Xian, fl. ( + 1023, +1050) c1s1. 2
Joint (of robot) c6s6. 5
Ju c2s2. 3
KdV equation c8s8. 5
Kepler equation c8s8. 5
Kepler, J., ( + 1571, +1630) c8s8. 5
Kepler’s laws c8s8. 5
Kernel of tuple(s) c4d1. 18 c4n1.
Kleinian geometry c7s7. 1
Lagrange projection c5d5. 7
Lagrange series c8s8. 5
Lagrange, J. L., ( + 1736, +1813) c5s5. 5
Lagrangian mulptiplier c5d5. 3
Lagrangian polset c5d5. 4
Leading coefficient (of pol) c4d2. 4 c4n2.
Leading degree-tuple (of pol) c4d2. 4 c4n2.
Leading monom (of pol) c4d2. 4 c4n2.
Leading term (of pol) c4d2. 4 c4d2.
Leading variable (of pol) c3d3. 1
Least common multiple of tuple(s) c4d1. 6 c4n1.
Length (of pol) c3d3. 1
Li Chunfeng, fl. + 656 c1s1. 1
Li Ye, ( + 1192, + 1279) c1s1. 1 c1s1. c2s2.
Liu - Zu Principle (= Zu Geng Principle) c2s2. 3
Liu Hui, fl. +263 c1s1. 1 c1s1. c2s2.
Liu Hui’s 2 : 1 Principle c2s2. 3
Liu Yi, fl. +12c c1s1. 2
Lord Zhou, fl. -1122 c2s2. 3
Lower ordering c3d3. 5 c3d3. c3d5. c3n5. c4d2. c4d1. c4d2. c4d2. c4d2. c4d2. c4d2. c4n2.
M-part c4d3. 8
M-pol c4d3. 6
M-product c4d3. 5
Malfatti problem c6s6. 3 c6e3.
Manipulator c6d5. 1
Mathematical Treatise in Nine Chapters c1s1. 1
Maxim of tuple-set(s) c4d1. 11
Maxt c6s6. 1
Mechanical geometry theorem-proving c2s2. 2 c3e2. c7s7.
Mechanical system c1s1. 1
Mechanizable c2s2.2
Mechanization theorem c2s2. 1
Mei Wengding, ( + 1633, +1721) c2s2. 3
Membership problem c4s4. 4
Method of Condensed Coefficients c6s6. 1
Method of undetermined coefficients c8s8. 5
Metric geometry c7d1. 6
Mian c1s1. 2
Miyaoka — Yau inequality c5t3. 8
Modified Well-Ordering Principle c3s3. 4 c3t4.
Monom c4d2. 1
Morley theorem c7el. 4
Motztkin polynomial c8el. 1
MTP c7s7. 1
MTP-Principle c7s7. 1
Multiple of tuple(s) c4n1. 3
Multiplier of tuple(s) c4d1. 15 c4n1.
N-part c4d3. 8 c4d3.12
N-pol c4d3.9
Newton, I., ( + 1642, +1727) c8s8. 1 c8s8.
Newton’s formulae c8e1. 7
Newton’s laws c8s8. 5
Nine Chapters or Nine Chapters of Arithmetic c1s1. 1 c1s1. c2s2.
Non-contractible irreducible decomposition (of varieties) c3d2. 15 c3t2. c3t2. c3d6.
Non-degeneracy condition c2s2. 1 c3e2. c7s7. c7r1. c7s7.
Non-degenerate c7s7. 1
Non-linear evolution PDE c8s8. 5
Non-Linear Programming Problem c8e2. 6
Non-multiplier of tuple(s) c4d1. 15 c4n1.
Non-reduced c3s3. 3 c3d3.
Non-trivial 8-triad configuration c7e3. 1
Normal form (of oriented line) c6d3. 5
Normal form (of pol) c3s3. 3 c3d3. c4d2.
Normal form of a pol (= polynomial) c4d2. 3
Normalized coordinates (of oriented line) c6d3. 6 c6d3.
Object variety (of irreducible algebraic correspondence) c5d2. 5 c5n2.
Oppositely oriented c6d3. 3 c6n3. c6d3. c6n3.
Optimal c5d5. 9
Optimal point c5s5. 10
Optimal value c5s5. 11 c5n5.
Optimization principle c5s5. 5
Optimization Problem Î c5s5. 5
Order of approximation c6d2. 5
Order of tinies c6d2. 4
Ordering c3s3. 3 c4s4. c4s4.
Ordering of autoreduced set c4dl. 10
Ordering of tuple(s) c4d1. 8 c4n1. c4rl.
Ordering of tuple-set(s) c4d1. 10
Ordinary geometry c7d1. 7
Ordinary point c3s3.1 c3d1.
Oriented angle c7d2. 3 c7n2.1 c7r2.
Oriented circle c6d3. 7
Oriented coordinates c6d3. 4
Oriented line c6d3. 2
Oriented radius c6d3. 8
Oriented tangency c6d3. 9 c6d3.10
Ostrowski theorem c6t2.1
Out - In Complementary Principle c1s1. 3 c2s2.
Pappus theorem c7s7.1
Parametrization c5d4 c5e4. c5e4.
Partial ascending set c3d6. 1
Partial ordering of autoreduced polset c4d2. 10
Partial ordering, of asc-sets or of triangulated sets c3d3.12 c3d3.13
Partial ordering, of autoreduced polsets c4d2.10
Partial ordering, of pols c3d3. 5 c3d4.
Partial ordering, of polsets c3d3.15 c3d5.
Pascal axiom c7s7.1 c7d1.
Pascalian axiomatic system c7d1. 4
Pascalian geometry c7s7. 1
Pasch Theorem c7e4. 3 c7e4.
Pathological healthy exact representation c6d2. 6
Pathological monomial c6d2. 6
Pieri - Giambelli Formula c5pf3. 6
Place-valued decimal system c1s1. 1 c1s1.
Planet motion c6s6. 4 c8s8.
Pol (= polynomial) c3s3. 2 c3d2.
Pol-number set (of a polset) c3s3. 5 c3d5.
Pole (of rotation) c7d2. 7
Pole curve c8d3. 5
Pole point c8d3. 4
Polset c3s3. 2 c3d2.
Polynomial-equations solving c1 c6
Poncelet Porism c8s8. 5
Poncelet triangle c8s8. 5
Poncelet, V., ( + 1789, +1867) c8s8. 5
Positive-Negative Root-Extraction Shu c1s1. 2
Positive-Negative Shu c1s1. 2
Positively equivalent c6d3. 1
Precision degree c6d2. 2 c6d2.
Primitive element c3s3. 1 c3dl. c3pp1.
Prismatic joint (of robot) c6d5. 1
Product of tuple(s) c4d1. 4
Projection (of affine space) c5d5. 4
Projection (of ideal) c4d4. 3 c4n4.
Projection (of quasi-variety) c5s5. 4
Projection problem c5s5. 4
Projection theorem c5s5. 4 c5t4.
Projective completion of algebraic correspondence c5d2. 4
Projective space c3s3. 1 c3n1.
Projective variety c3d2. 19 c3n2.
Proper subvariety c3d2. 11
Pseudo-remainder c3s3. 3 c3r3. c3ðð5.
Puma R-robot c6d5. 16
Puma type robot c6d5. 15
Puma560 c6d5. 17
Pure intersection theorem c2s2. 1
| Pyramid Problem c8s8. 5
Pythagoras, fl. ( - 560, - 480) c2s2. 1
Pythagoras’ theorem c2s2. 1 c2e1.
Qin - Heron formula c2s2. 3 c8e1.
Qin, Jiushao, fl. +1247 c1s1. 1 c1s1. c2s2.
Quadrilateral Convexity Theorem c7e4. 6
Quartic Problem c8e2. 4
Quasi-tangent space c5d1. 6 c5d1. c5r1. c5t1.
Quasi-variety c5d4. 3 c5r4.
Range (of robot) c6d5. 6
Real algebraic variety c5s5. 1
Real basis (of a real variety) c5d1. 3 c8s8.
Real curve (or surface) c8s8. 4 c8r4.
Real dimension (of a real variety) c8s8. 4 c8r4.
Real variety c5d1. 13 c5s5. c8s8.
Real-complete basis (of a real variety) c5d1. 15 c8s8.
Reality conditions c6d4. 4
Reduced c3s3. 3 c3d3. c3d3. c4d2. c4d2.
Reduced autoreduced polset c4d2. 9
Reduced Groebner basis c4d2. 16
Reduced well-behaved basis c4d3. 11
Reducible variety c3s3. 2 c3d2.
Reduction c4d2. 13
Reduction of autoreduced polset c4d2. 13
Regular point c8s8. 4
Regular zero (of irreducible asc-set) c3d6. 6
Related points (in moving planes) c8d3. 1
Remainder c3s3. 3 c3d3. c3d3.
Remainder formula c3s3. 3 c3d3.
Remainder in Ritt sense c3d3. 6
Remainder-set c3s3. 3 c3d3.
Replacement Rules c3s3. 5
Rest c4d2. 12 c4n2.
Rest formula c4d2. 13
Restricted Tarski domain c7d4. 1
Resultant c3e2. 4 c3e2. c3r5.
Revolutory joint (of robot) c6d5. 1
Rigid configuration c6d4. 1 c6d4.
Ritt, J. F., ( + 1893, +1950) c3s3. 3 c6s6.
Robot c6d5. 1
Robot map c6d5. 5
Root-extraction c1s1. 2
Root-Extraction Basic Diagrams c1s1. 2
Root-Extraction Shu c1s1. 2
Root-extraction with zong c1s1. 2
Rotation group c3e4. 3 c3e5.
Same ordering c3d3. 6 c3d3.13
Schubert cycle c5d3. 2
Sea-Island Formula c1s1. 1 c2s2.
Sea-Island or Sea-Island Mathematical Manuel c1s1. 1
Secant theorem c7e3. 4
Secondary trisector (of oriented angle) c7d2. 6
Seidenberg technique c7s7. 4 c7l4.
Separant (of pol) c3d3. 4
Shang Gao, fl. ( - 1122) c1s1. 1 c2s3.
Shi c1s1. 1 c2s2.
Shu c1s1. 1 c2s2.
Simple point (of irreducible variety) c5d1. 9
Simple quasi-variety c5d4. 5
Simson - Line Theorem c7e2. 1
Sine-Sum Theorem c8e2. 3
Singular hand-position (of robot) c6d5. 7
Singular locus (of irreducible variety) c5d1. 11
Singular point (of irreducible variety) c5d1. 10
Singular position (of robot hand) c6d5. 9
Soliton c8s8. 5
Specialization c3s3. 1 c3d1. c3nl. c3n1.
Specialization-Extension Theorem c3pp1. 11 c3r2.
Square-root extraction c1s1. 2
Square-Root Extraction Shu c1s1. 2
Squared-remainder c3d3. 18
Squared-Remainder Formula c3d3. 18’
Steiner theorem c7e2. 3
Suan shu c1s1. 1
Subeliminant c3s3. 5 c3d5.
Subeliminant Problem SE c3s3. 5
Subrest c4d2. 12
Subresultant c3s3. 5 c3r5.
Subsidiary geometries c7s7. 1
Sun-Height Formula c1s1. 1 c2s2.
Surface-Fitting Problem SF c8s8. 4
Syzygy c4d4. 2
Syzygy ideal c4d4. 5 c4n4.
Syzygy pol c4d4. 4
Tangent space c5d1. 8 c5r1. c5t1.
Tarski (Mechanization) Theorem c1s1. 2 c7t1. c7s7.
Tarski domain c7d1. 9
Tarski, A., ( + 1902, +1983) c2s2. 2 c7s7.1 c7s7.4
Th bault - Taylor - Chou Theorem c7r3. 10
TINY c6d2. 4
Tiny order c6d2. 4
Tiny part c6d2. 2
Total multiple set of tuple(s) c4d1. 16 c4d1. c4n1.
Triangulated set c3s3. 3 c3d3. c6s6.
Trisector (of oriented angle) c7d2. 5
Trivial asc-set c3s3. 3 c3d3.
Trivial ascending set c3d3. 9 cÇrÇ.
Trivial triangulated set c3s3. 3 c3d3.
Tuple(s) c4d1. 1
Tuple-Decomposition Theorem c4t1. 9
Tuple-set(s) c4s4. 1
Universal field c3s3. 1 c3d1. c3rl.
Universal proof c2s2. 1
Unordered Desarguesian geometry c7d1. 2
Unordered metric geometry c7d1. 6
Unordered Pascalian geometry c7d1. 5
Variety c3s3. 1 c3d2.
Variety-Decomposition Theorem c3t2. 10 c3t6. c3d6.
Var[ ] c3n6. 2
Verification c3s3. 4 c3d4.
Vortex configuration c6s6. 4 c6n4.
Vortex filament c6s6. 4
Vortex Motion c6s6. 4
Wang Hao, ( + 1921, + 1995) c2s2.2
Wang Xiaotong, fl. 1626 c1s1. 1 c1s1.
Weak asc-set c3s3. 3 c3d3.
Well-arranged basis c4d2. 14
Well-arranged basis of an ideal c4d2 14
Well-behaved basis c4d3. 10
Well-behaved basis of an ideal c4d3. 10
Well-Behaved Property c4t3. 6
Well-ordering principle c3s3. 4 c3t4. c3t4. c3t4. c6s6.
Whitney decomposition c5t1. 15 c5d1.
Wintner conjecture c6s6. 4
wsolve c6s6. 1 c7t4. c8e2. c8e4. c8e4. c8e4.3
Xuan c2s2. 3
Yang Hui, fl. ( + 1261, +1275) c1s1. 1 c1s1.
Zassenhaus Problem c8s8. 5
Zerlegungs-Aequivalenz c2s2. 3
Zero c1s1. 1 c3s3. c3d2. c3d2.
Zero-decomposition c3s3. 5
Zero-Decomposition Theorem c3s3. 5 c3t5. c3t5. c6s6.
Zero-equivalence c3s3. 2 c3d2. c3n2.
Zero-set c3s3. 2 c3d2.
Zero-structure c3s3.4
Zero-tuple(s) c4d1. 2 c4n1.
Zhang Cang, ( - 250, - 152) c1s1. 1
Zhang Heng, ( + 78, +139) c2s2. 3
Zhao Shang, fl. 3c c1s1. 1 c1s1.
Zhou Bi (= Zhou Bi Mathematics Manuel) c1s1. 1 c2s2.
Zhu c1s1.1
Zhu Shijie, fl. ( + 1299, + 1303) c1s1. 1 c1s1. c2s2. c3e3. c3e4. c3e4. c3e5. c6s6.
Zhui Shu (= Art of Mending) c1s1. 1 c2s2.
Zong c1s1. 2
Zong-fa c1s1. 2
Zu Chongzhi, ( + 429, +500) c1s1. 1 c1s1. c2s2.
Zu Geng Principle (= Liu - Zu Principle) c2s2. 3
Zu Geng, fl. +5c c1s1. 2
|
|
 |
Реклама |
 |
|
|