Авторизация
Поиск по указателям
Charalambides C.A. — Enumerative Combinatorics
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Enumerative Combinatorics
Автор: Charalambides C.A.
Аннотация: Enumerative Combinatorics presents elaborate and systematic coverage of the theory of enumeration. The first seven chapters provide the necessary background, including basic counting principles and techniques, elementary enumerative topics, and an extended presentation of generating functions and recurrence relations. The remaining seven chapters focus on more advanced topics, including, Stirling numbers, partitions of integers, partition polynomials, Eulerian numbers and Polya's counting theorem.
Extensively classroom tested, this text was designed for introductory- and intermediate-level courses in enumerative combinatorics, but the far-reaching applications of the subject also make the book useful to those in operational research, the physical and social science, and anyone who uses combinatorial methods. Remarks, discussions, tables, and numerous examples support the text, and a wealth of exercises-with hints and answers provided in an appendix—further illustrate the subject's concepts, theorems, and applications.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2002
Количество страниц: 609
Добавлена в каталог: 18.11.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Partition (s) of a finite set enumeration of 66 273 274
Partition (s) of integers conjugate 386
Partition (s) of integers definition of 370
Partition (s) of integers Ferrers diagram of 386
Partition (s) of integers for the numbers of 377 378
Partition (s) of integers generating function for the numbers of 374 375 511
Partition (s) of integers interrelations among partition numbers 383—385 387
Partition (s) of integers into even number of parts 381
Partition (s) of integers into even number of unequal parts 381 389
Partition (s) of integers into even parts 379
Partition (s) of integers into even unequal parts 398
Partition (s) of integers into odd number of parts 381
Partition (s) of integers into odd parts 379
Partition (s) of integers into odd unequal parts 398
Partition (s) of integers into parts of restricted size 380 396 398
Partition (s) of integers into specified parts 382
Partition (s) of integers into unequal parts 378
Partition (s) of integers into unequal parts of restricted size 400
Partition (s) of integers parts 381 389
Partition (s) of integers, perfect 401
Partition (s) of integers, recurrence relation for the number of 371 373
Partition (s) of integers, self-conjugate 386
Partition (s) of integers, table for the numbers of 372 373
Partition polynomial(s) of an arithmetical function 416
Partition polynomial(s), convolution of 448
Partition polynomial(s), exponential Bell 412 452 466 473 490 505
Partition polynomial(s), expressed by partial Bell 430
Partition polynomial(s), general 419
Partition polynomial(s), logarithmic 424
Partition polynomial(s), partial Bell 412 466 473
Partition polynomial(s), potential 428 431 451
Partition polynomial(s), recurrence relation of 415
Partition polynomial(s), table of 417
Partitions of ordered pairs of integers 403
Pascal’s triangle 55
Perfect partitions 401
Permutation(s) by ascending runs 530
Permutation(s) by cycles 464 465
Permutation(s) by fixed points 170 172
Permutation(s) by inversions 541
Permutation(s) by partially ordered cycles 472 473 475
Permutation(s) by peaks 541
Permutation(s) by ranks 175
Permutation(s) by records 540
Permutation(s) by successions 177 179
Permutation(s) by transpositions 189
Permutation(s) with limited repetition generating function for the number of 214
Permutation(s) with repetition generating function for the number of 213
Permutation(s) with restricted repetition enumeration of 164
Permutation(s), ascending runs of 530
Permutation(s), cycle decomposition of 463
Permutation(s), cyclic with restricted repetition 505
Permutation(s), definition of 40
Permutation(s), enumeration by ordered cycles 474
Permutation(s), enumeration of 47 49
Permutation(s), even 469
Permutation(s), falls of 531
Permutation(s), fixed points of 169
Permutation(s), general generating function for the number of 210
Permutation(s), generating function by number of cycles 466 467
Permutation(s), generating function by number of partially ordered cycles 474 477
Permutation(s), generating function by the number of non-descending runs 537
Permutation(s), generating function for the number of 193
Permutation(s), non-descending runs of 533
Permutation(s), odd 469
Permutation(s), order of 491
Permutation(s), rank of 174
Permutation(s), recurrence relation for the number of 45 46
Permutation(s), restricted enumeration by cycles 465
Permutation(s), rises of 531
Permutation(s), succession of 176
Permutation(s), universal generating function by number of cycles 484
Pigeonhole Principle 38
Polya counting theorem 502
Population 86
Power set 4
Power sum symmetric functions 427 432 458
Principle of addition 16
Principle of inclusion and exclusion 134 136
Principle of multiplication 20
Principle of pigeonhole 38
Principle of reflection 78
Principle of the want of sufficient reason 24
Priority lists 349
probability 26
Probability distribution, binomial 88 218
Probability distribution, binomial moments of 218
Probability distribution, factorial moments of 217
Probability distribution, geometric 217
Probability distribution, hypergeometric 87
Probability distribution, logarithmic distribution convolution of 287
Probability distribution, moments of 124
Probability distribution, negative binomial moments of 126
Probability distribution, negative hypergeometric 87
Probability, classical 24
PRODUCT 30
q-binomial coefficient(s), defined 404
q-binomial coefficient(s), orthogonality relation 406
q-binomial coefficient(s), recurrence relation of 404 405
q-binomial convolution formula 406
Q-binomial formula 406
q-Eulcrian numbers 540
q-factorial 404
q-factorial convolution formula 406
q-identity 392
q-Lah numbers 409
q-Lah numbers, signless 409
q-negative binomial formula 406
q-number 404
Rank numbers 176 185
Rank numbers, table of 176
Rank of a permutation 174
Recurrence relation, definition of 22
Recurrence relation, general solution of 235
Recurrence relation, linear 233
Recurrence relation, linear complete 233
Recurrence relation, linear homogeneous 233
Recurrence relation, linear with constant coefficients general solution of 248
Recurrence relation, particular solution of 248
Recurrence relation, solution by generating function 250
Recurrence relation, solution by iteration 235
Recurrence relation, solution by method of characteristic roots 239
Reflection principle 78
Reflection principle, figure 79
Regions of a plane, enumeration of 237 265 272
Relation 7
Relation, equivalence 7
Relation, inverse or reciprocal 7
Round table conference 183
Runs in combinations 98 161
Runs in permutations 97
Sample 86
Sample points 24
Sample space 24
Schlomilch’s formula 290
Schlomilch’s formula for 290
Schlomilch’s formula for associated 323 324
Schlomilch’s formula for asymptotic expression of 323
Schlomilch’s formula for definition of 278
Schlomilch’s formula for explicit expression of 291
Schlomilch’s formula for expressed in terms of the Stirling numbers of the second kind 290
Schlomilch’s formula for generating function of 282
Schlomilch’s formula generating function of 283
Schlomilch’s formula in non-identical Bernoulli trials 283
Schlomilch’s formula non-central 314
Schlomilch’s formula non-central signless 315 331 332 466
Schlomilch’s formula recurrence relation 321
Schlomilch’s formula recurrence relation of 294
Schlomilch’s formula signless 279 280 322 465 471 477 478 483
Schlomilch’s formula signless associated 478
Schlomilch’s formula table of 294
Selection of a central committee 347
Sequence of elements 8
Set 3
Set, cardinal of 14
Set, complement of 10
Set, countable 9
Set, division of 13
Set, empty or null 3
Set, finite 9
Set, infinite 9
Set, infinitely countable 9
Set, partition of 14
Set, uncountable 9
Set, universal 3
Sets, difference of 10
Sets, disjoint 13
Sets, equivalent 9 14
Sets, exchangeable 142
Sets, intersection of 10
Sets, union of 9
Sieve of Eratosthenes 160
Soccer’s results foresight 37
Spread of rumors 101
Stabilizer 493
Statistical mechanics model Bose — Einstein 89
Statistical mechanics model Fermi — Dirac 90
Statistical mechanics model Maxwell — Boltzman 89
Stirling numbers in a Markov chain 300
Stirling numbers of the first kind 204 291 299 328 329
Stirling numbers of the second kind 96 97 150 151 165 202 291 298 299 328 329 340 342 347 368 474 519 533 544
Stirling numbers, associated 165 324 325 365
Stirling numbers, asymptotic expression of 323
Stirling numbers, definition of 278
Stirling numbers, explicit expression of 289
Stirling numbers, generating function of 282 298
Stirling numbers, non-central 188 314 332 341 347 475
Stirling numbers, orthogonality relations 281
Stirling numbers, recurrence relation 321
Stirling numbers, recurrence relation of 293 297
Stirling numbers, table of 295
Stirling’s formula 109
Stochastic model 24
Subfactorials 178 182 185
Subfactorials, defined 172
Subfactorials, generating function of 199
Subfactorials, table of 172
Subset 4
Subsets of a finite set number of 21 116
Succession numbers 179 230
Succession numbers, generating function of 230
Succession numbers, table of 180
Succession of a circular permutation 181
Succession of a permutation 176
SUM 27
Sum of multinomial coefficients 150 165 400
Summation, changing the order of 29
Sums of sums, generating function of 261
Symbolic calculus 198
Symmetric functions, elementary 192 427 432 458
Symmetric functions, homogeneous product sum 432 458
Symmetric functions, power sum 427 432 458
Tangent coefficients 543
Tennis tournament problem 237
Ternary number system 47
Ternary sequences, enumeration of 47 93
Touchard polynomial(s) 442 452 475
Touchard polynomial(s), expressed by Bell polynomials 445
Touchard polynomial(s), generating function of 444
Touchard polynomial(s), recurrence relation of 446
Transportation of products 73
Transposition 189 462
Triangulation of convex polygons 229
Universal set 3
Up-down permutations 543
Vandermonde’s formula 105
Variance of a sequence 216
Venn diagrams 4
Wallis formula 107
Wronski determinant 234
Реклама