Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Charalambides C.A. — Enumerative Combinatorics
Charalambides C.A. — Enumerative Combinatorics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Enumerative Combinatorics

Автор: Charalambides C.A.

Аннотация:

Enumerative Combinatorics presents elaborate and systematic coverage of the theory of enumeration. The first seven chapters provide the necessary background, including basic counting principles and techniques, elementary enumerative topics, and an extended presentation of generating functions and recurrence relations. The remaining seven chapters focus on more advanced topics, including, Stirling numbers, partitions of integers, partition polynomials, Eulerian numbers and Polya's counting theorem.

Extensively classroom tested, this text was designed for introductory- and intermediate-level courses in enumerative combinatorics, but the far-reaching applications of the subject also make the book useful to those in operational research, the physical and social science, and anyone who uses combinatorial methods. Remarks, discussions, tables, and numerous examples support the text, and a wealth of exercises-with hints and answers provided in an appendix—further illustrate the subject's concepts, theorems, and applications.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 609

Добавлена в каталог: 18.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Partition (s) of a finite set enumeration of      66 273 274
Partition (s) of integers conjugate      386
Partition (s) of integers definition of      370
Partition (s) of integers Ferrers diagram of      386
Partition (s) of integers for the numbers of      377 378
Partition (s) of integers generating function for the numbers of      374 375 511
Partition (s) of integers interrelations among partition numbers      383—385 387
Partition (s) of integers into even number of parts      381
Partition (s) of integers into even number of unequal parts      381 389
Partition (s) of integers into even parts      379
Partition (s) of integers into even unequal parts      398
Partition (s) of integers into odd number of parts      381
Partition (s) of integers into odd parts      379
Partition (s) of integers into odd unequal parts      398
Partition (s) of integers into parts of restricted size      380 396 398
Partition (s) of integers into specified parts      382
Partition (s) of integers into unequal parts      378
Partition (s) of integers into unequal parts of restricted size      400
Partition (s) of integers parts      381 389
Partition (s) of integers, perfect      401
Partition (s) of integers, recurrence relation for the number of      371 373
Partition (s) of integers, self-conjugate      386
Partition (s) of integers, table for the numbers of      372 373
Partition polynomial(s) of an arithmetical function      416
Partition polynomial(s), convolution of      448
Partition polynomial(s), exponential Bell      412 452 466 473 490 505
Partition polynomial(s), expressed by partial Bell      430
Partition polynomial(s), general      419
Partition polynomial(s), logarithmic      424
Partition polynomial(s), partial Bell      412 466 473
Partition polynomial(s), potential      428 431 451
Partition polynomial(s), recurrence relation of      415
Partition polynomial(s), table of      417
Partitions of ordered pairs of integers      403
Pascal’s triangle      55
Perfect partitions      401
Permutation(s) by ascending runs      530
Permutation(s) by cycles      464 465
Permutation(s) by fixed points      170 172
Permutation(s) by inversions      541
Permutation(s) by partially ordered cycles      472 473 475
Permutation(s) by peaks      541
Permutation(s) by ranks      175
Permutation(s) by records      540
Permutation(s) by successions      177 179
Permutation(s) by transpositions      189
Permutation(s) with limited repetition generating function for the number of      214
Permutation(s) with repetition generating function for the number of      213
Permutation(s) with restricted repetition enumeration of      164
Permutation(s), ascending runs of      530
Permutation(s), cycle decomposition of      463
Permutation(s), cyclic with restricted repetition      505
Permutation(s), definition of      40
Permutation(s), enumeration by ordered cycles      474
Permutation(s), enumeration of      47 49
Permutation(s), even      469
Permutation(s), falls of      531
Permutation(s), fixed points of      169
Permutation(s), general generating function for the number of      210
Permutation(s), generating function by number of cycles      466 467
Permutation(s), generating function by number of partially ordered cycles      474 477
Permutation(s), generating function by the number of non-descending runs      537
Permutation(s), generating function for the number of      193
Permutation(s), non-descending runs of      533
Permutation(s), odd      469
Permutation(s), order of      491
Permutation(s), rank of      174
Permutation(s), recurrence relation for the number of      45 46
Permutation(s), restricted enumeration by cycles      465
Permutation(s), rises of      531
Permutation(s), succession of      176
Permutation(s), universal generating function by number of cycles      484
Pigeonhole Principle      38
Polya counting theorem      502
Population      86
Power set      4
Power sum symmetric functions      427 432 458
Principle of addition      16
Principle of inclusion and exclusion      134 136
Principle of multiplication      20
Principle of pigeonhole      38
Principle of reflection      78
Principle of the want of sufficient reason      24
Priority lists      349
probability      26
Probability distribution, binomial      88 218
Probability distribution, binomial moments of      218
Probability distribution, factorial moments of      217
Probability distribution, geometric      217
Probability distribution, hypergeometric      87
Probability distribution, logarithmic distribution convolution of      287
Probability distribution, moments of      124
Probability distribution, negative binomial moments of      126
Probability distribution, negative hypergeometric      87
Probability, classical      24
PRODUCT      30
q-binomial coefficient(s), defined      404
q-binomial coefficient(s), orthogonality relation      406
q-binomial coefficient(s), recurrence relation of      404 405
q-binomial convolution formula      406
Q-binomial formula      406
q-Eulcrian numbers      540
q-factorial      404
q-factorial convolution formula      406
q-identity      392
q-Lah numbers      409
q-Lah numbers, signless      409
q-negative binomial formula      406
q-number      404
Rank numbers      176 185
Rank numbers, table of      176
Rank of a permutation      174
Recurrence relation, definition of      22
Recurrence relation, general solution of      235
Recurrence relation, linear      233
Recurrence relation, linear complete      233
Recurrence relation, linear homogeneous      233
Recurrence relation, linear with constant coefficients general solution of      248
Recurrence relation, particular solution of      248
Recurrence relation, solution by generating function      250
Recurrence relation, solution by iteration      235
Recurrence relation, solution by method of characteristic roots      239
Reflection principle      78
Reflection principle, figure      79
Regions of a plane, enumeration of      237 265 272
Relation      7
Relation, equivalence      7
Relation, inverse or reciprocal      7
Round table conference      183
Runs in combinations      98 161
Runs in permutations      97
Sample      86
Sample points      24
Sample space      24
Schlomilch’s formula      290
Schlomilch’s formula for      290
Schlomilch’s formula for associated      323 324
Schlomilch’s formula for asymptotic expression of      323
Schlomilch’s formula for definition of      278
Schlomilch’s formula for explicit expression of      291
Schlomilch’s formula for expressed in terms of the Stirling numbers of the second kind      290
Schlomilch’s formula for generating function of      282
Schlomilch’s formula generating function of      283
Schlomilch’s formula in non-identical Bernoulli trials      283
Schlomilch’s formula non-central      314
Schlomilch’s formula non-central signless      315 331 332 466
Schlomilch’s formula recurrence relation      321
Schlomilch’s formula recurrence relation of      294
Schlomilch’s formula signless      279 280 322 465 471 477 478 483
Schlomilch’s formula signless associated      478
Schlomilch’s formula table of      294
Selection of a central committee      347
Sequence of elements      8
Set      3
Set, cardinal of      14
Set, complement of      10
Set, countable      9
Set, division of      13
Set, empty or null      3
Set, finite      9
Set, infinite      9
Set, infinitely countable      9
Set, partition of      14
Set, uncountable      9
Set, universal      3
Sets, difference of      10
Sets, disjoint      13
Sets, equivalent      9 14
Sets, exchangeable      142
Sets, intersection of      10
Sets, union of      9
Sieve of Eratosthenes      160
Soccer’s results foresight      37
Spread of rumors      101
Stabilizer      493
Statistical mechanics model Bose — Einstein      89
Statistical mechanics model Fermi — Dirac      90
Statistical mechanics model Maxwell — Boltzman      89
Stirling numbers in a Markov chain      300
Stirling numbers of the first kind      204 291 299 328 329
Stirling numbers of the second kind      96 97 150 151 165 202 291 298 299 328 329 340 342 347 368 474 519 533 544
Stirling numbers, associated      165 324 325 365
Stirling numbers, asymptotic expression of      323
Stirling numbers, definition of      278
Stirling numbers, explicit expression of      289
Stirling numbers, generating function of      282 298
Stirling numbers, non-central      188 314 332 341 347 475
Stirling numbers, orthogonality relations      281
Stirling numbers, recurrence relation      321
Stirling numbers, recurrence relation of      293 297
Stirling numbers, table of      295
Stirling’s formula      109
Stochastic model      24
Subfactorials      178 182 185
Subfactorials, defined      172
Subfactorials, generating function of      199
Subfactorials, table of      172
Subset      4
Subsets of a finite set number of      21 116
Succession numbers      179 230
Succession numbers, generating function of      230
Succession numbers, table of      180
Succession of a circular permutation      181
Succession of a permutation      176
SUM      27
Sum of multinomial coefficients      150 165 400
Summation, changing the order of      29
Sums of sums, generating function of      261
Symbolic calculus      198
Symmetric functions, elementary      192 427 432 458
Symmetric functions, homogeneous product sum      432 458
Symmetric functions, power sum      427 432 458
Tangent coefficients      543
Tennis tournament problem      237
Ternary number system      47
Ternary sequences, enumeration of      47 93
Touchard polynomial(s)      442 452 475
Touchard polynomial(s), expressed by Bell polynomials      445
Touchard polynomial(s), generating function of      444
Touchard polynomial(s), recurrence relation of      446
Transportation of products      73
Transposition      189 462
Triangulation of convex polygons      229
Universal set      3
Up-down permutations      543
Vandermonde’s formula      105
Variance of a sequence      216
Venn diagrams      4
Wallis formula      107
Wronski determinant      234
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте