Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Faugeras O., Luong Q., Papadopoulo T. — The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications
Faugeras  O., Luong Q., Papadopoulo T. — The Geometry of Multiple  Images: The Laws That Govern the Formation of Multiple  Images of a Scene and Some of Their Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications

Авторы: Faugeras O., Luong Q., Papadopoulo T.

Аннотация:

This book formalizes and analyzes the relations between multiple views of a scene from the perspective of various types of geometries. A key feature is that it considers Euclidean and affine geometries as special cases of projective geometry.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 2001

Количество страниц: 644

Добавлена в каталог: 16.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Projection matrix      see “Perspective projection matrix”
Projection, plane      181 182 197 420 425 426
Projection, ray      182 183 194 195 429 430 433 443 448
Projective basis      18 33 52 67 80 81 82 84 85 95—97 105 111 121 182 192 197 302 351 357 362 366 376 383 390 475 485 486 514 519
Projective basis, canonical      67 165 181 183 363 448 474 476 536
Projective basis, change of      86 87 115 207 208 362 364 381 530
Projective canonical representation      see “Canonical representation”
Projective completion      93 95 98 99 117—119 122
Projective completion of the affine line      94 98
Projective completion of the affine plane      94—97 119
Projective completion of the affine space      94 164 197 207 383
Projective coordinates      5 6 13 14 18 34 67 79 80 81 83 95—98 100 102 108 112 116 118 121 179 180 182 187 195—197 202 207 232 261 264 269 305 317 364 365 368—370 376 381 384 398 420 460 470 485 486 504 514 520
Projective group      67 86 92 99 120 124 361 503
Projective hyperplane      66 89 91 106 266 369
Projective hyperplane at infinity      68 93 98
Projective invariant      xv 11 33 34 43 65 67 86 104 119 121 125 193 243 248 360 369 370 404 405 486
Projective line      7 11 50 89 92 96 98 100 106 107 135 158 159 190
Projective line, dual      115 165 166 350 352 354
Projective linear      18 24 216 233 261
Projective morphism      83 84 99 180 186 195 225 253 255 261 269 311 433
Projective morphism, infinity      279 281 286 381 387—391 393 395 397 544 545 568
Projective morphism, planar      252 254 272 273 274 276 279 286 295 306 308 362 369 381 425 435 508
Projective parallax      35—37 368 374 377
Projective parameter      87 103 110 111 121 213 267 391
Projective plane      6 33 55 66 89 90 92 97 136 159 162 185 189 201 261 304 365 433
Projective plane, dual of      350 423 446 570
Projective point      11 18 78 79 89 190 486
Projective reconstruction      31 33 34 39 42 51 59 329 346 365—368 405 531 537 589
Projective space      6 10 29 40 66 90 132 162 185 196 385 532 567
Projective space, dual of      106 215 261
Projective space, general      6 66 78
Projective stratum      360 362—380 503—525 560 565 569
Projective subspace      66 67 88 132 134
Projective transformation      see “Homography”
Projectively, dependent      79
Projectively, independent      79 89 389
Pseudo-inverse      190 311
QR decomposition      14 211 213 228 568
Quadratic transformation      249 304 306 312 468
Quadric      67 112 303 537 588
Quadric, absolute      69 115 117 122 396 569—572 589 590
Quadric, degenerate      113 569
Quadric, dual      113 116 118 569
Quadrifocal constraint      505
Quadrifocal tensor      506 536
Quaternion      285 535 580
Radial distortion      233 235 236 238
RANSAC      332 334 488
Reciprocal transformation      304
Reduced projection matrix      225 228 231 293 297 467 516 565
Renormalization technique      353
Residual      330 332 333 354 479 492 494 525 526 589
Retinal plane      xxiii 11 17 19 21 44 84 178 184 191 227 239 252 260 266 272 276 277 292 296 369 387 406 425 426 429 433 438 454 459 463 533 570 588
Rigid displacement      see “Affine rigid displacement”
Robot navigation      290 376 382 392
Rotation matrix      281 285 298 456 528 543 545 584
S-matrix      see “Special matrix”
Scaled orthographic      see “Weak perspective”
Self-calibration      31 56 57 60 65 310 313 380 467 531 537 540—591
Self-calibration, degeneracies      582—588
Similarity      see “Vector similarity” “Affine
Similarity invariant      see “Euclidean invariant”
Singular value decomposition      213 284 372 517 546 555 574 589
Skew      14 41 55 210 211 215 216 228 229 238 398 544 547 563 571 590
Special matrix      30 33 38 276 278 362 403 404 507 510 527
Standard deviation      331 334 477
Standard deviation, robust      332
stereo      xv 20 106 260 267 335 336 346 348 352 372 376 377 379 465
Stereo, rig      30 270 289 312 337 361 376 391 393 503 529—535 537
SVD      see “Singular Value Decomposition”
TRANSFER      35 44 48 50 59 413—415 439 440 460 463—467
Transposition      103 129
Trifocal axes constraint      442 444
Trifocal constraint      45 47 50 482 485 486 488 491 492 494 496 505
Trifocal epipolar constraint      442 446 450 493
Trifocal extended rank constraint      445 446 450 489
Trifocal horizontal constraint      444
Trifocal line      416 418 424 439 507
Trifocal matrix      49 420 429 431 435 446 448 454 459 462 472 490 492 510
Trifocal plane      44 45 379 413 422 439
Trifocal rank constraint      442 446 450 451
Trifocal tensor      xxiv 45 51 419—425 441 446 471 496 510
Trifocal tensor, Euclidean      411 454—459 467
Trifocal tensor, parametrization      483—491
Trifocal vertical constraint      442 446 450
Trilinearity      44 466 475
Tukey function      331 337
Umbilic      117 119
Vanishing line      38 175 202 206 291 292 310
Vanishing point      5 10 13 19 20 175 202 205 222 288 377 388 389 391 397 399
Variance      327 564
Vector, canonical      xx 87 95 131 158 159 162 164 168 187 191 200 442
Vector, canonical, dual      159 162 181
Vector, canonical, orthonormal      74
Vector, norm      74
Vector, similarity      75 77
Vector, space      xix 130 132 134 139 143 146 168
Vector, space, complex      76
Vector, space, dual      146 147 150
Vector, space, Euclidean      74
Weak calibration      261 285 310
Weak perspective      220 222 224 229 468 536
Zoom      2 56 222 233 548 576
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте