Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bennett W.R. — Physics of Gas Lasers
Bennett W.R. — Physics of Gas Lasers



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Physics of Gas Lasers

Автор: Bennett W.R.

Язык: en

Рубрика: Физика/Электромагнетизм/Оптика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1977

Количество страниц: 218

Добавлена в каталог: 22.07.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Internal beats      21 (Fig.) 90 91
Inverse Lamb dip      171
Inversion density, effective      110
Ion lasers, noble gas      158
Ion temperatures      160
Ion temperatures in argon ion laser      161 (Fig.)
Ion-ion scattering, small angle      161
Ions, accelerating      158
Isotope effect      130
Isotope effect, oscillator frequency      132
Isotope effect, power tuning      132
Isotope effect, single-mode      129
Jacobs      35
Jaseja      130 (Table)
Javan      21 104n 109 117 130 154 162 174 175 191 196
Javan, Bennett and Herriott      46
Johnson      36
Karlov      46
Kazantsev      175 184 185 186
Keller      181
Kindlmann      149 (Fig.) 150
Kisliuk      36
Kleinman      36
Kleppner      67n
Knutson      109 155 156 157 187 189 191 205
Kogelnick      21 27n 30 31 35 88
Kolomnikov      36
Kramers      94n
Kramers — Kronig relations      83 94 98 104
Kronig      94n
Kurnit      67
Lamb      69 89 104n 106 117 118 120 121 143 145 151 158 175
Lamb dip      38 63 106 127 178
Lamb dip, inverse      171
Lamb dip, simple derivation of      117
Lamb theory      63 143 144 145
Laser      see also "Helium-neon laser"
Laser pulses, mode-locked      149
Laser, $CO_{2}$      46
Laser, argon ion      37
Laser, frequency equation      93
Laser, helium      33 46 88 90
Laser, homogeneously broadened      99 100 101
Laser, inhomogeneously broadened      105
Laser, magnetostrictively tuned      90
Laser, oscilation frequency for      100
Laser, theoretical width of oscillation      89
Lasers, internally scanned      45
LaTourette      35 36 181
Lee      171 174 175 176
Letokhov      173 181 184
Levenson      181 203
Li      9 10 12 13 21 30 31 32
Lifetimes, excited state      5 149
Lifetimes, measurement of radiative      149
Lindholm      154
Line asymmetries      153
Line broadening      150
Line broadening in the argon ion laser      160
Line narrowing      89 152
Line shape for a radiating accelerating ion      159 (Fig.)
Line symmetry      157
Lisitzin      155 173 174 175 176 183 184 186 196
Locking effect      144
Longitudinal mode, isolation of      34
Lorentz broadening parameters for neon laser lines      157 (Fig.)
Lorentz width      8 155
Lorentz width, absorber      172
Lorentz width, absorption in methane      178
Lorentz width, intensity dependent      107
Lorentz width, power-broadened      147
Lorentz width, zero-field      150
Lorentzian limit      104
Lorentzian line, phase shift for      98
Lorentzian line, shape      73
Lorentzian natural width      73
Lorentzian profiles      81 (Fig.)
Lorentzian shaped holes      106 107
Magnetostrictively tuned laser      90
Maxwellian velocity distribution      80
McCall      67
McFarlane      117 118
Mercer      150 158 160
Methane, absorption      177
Methane, lines      173 177
Mikhnenko      155
Mirror locations      35
Mirrors, infinite strip      47
Mirrors, infinite strip plane parallel      14
Mirrors, plane circular      19
Mirrors, plane parallel      14 23
Mirrors, square aperture plane parallel      53
Mitchell      79 81
Mixed state      66
Mixed state, wave function      66
Mode appearance order      141
Mode competition      145
Mode coupling      53
Mode density      7 34
Mode discrimination      8 35
Mode distribution, oscillating      89 (Fig.)
Mode isolation      6 8
Mode isolation through saturable absorption      174 (Fig.)
Mode isolation, longitudinal      34
Mode locking effects      46
Mode locking, transverse      45
Mode mixing, cavity effects      45
Mode pulling effects      62 91
Mode pushing      91
Mode selection      34
Mode spacing      7
Mode suppression      170
Mode suppression with saturable absorbers      171
Mode suppression, technique      36 (Fig.)
Mode symmetry, effects in scanning lasers      52 53
Mode-locked laser pulses      149
Modes for continuous apertures      38
Modes, "walk-off"      9
Modes, diffraction loss for plane parallel and confocal      19 (Fig.) 23
Modes, dominant      19 (Fig.)
Modes, dominant confocal      23 26
Modes, dominant even symmetry      43 (Fig.)
Modes, even symmetric      19
Modes, higher-order      15 16
Modes, infinite strip      18
Modes, loss contours for curved mirror infinite strip      31 (Fig.)
Modes, non-symmetric      43 (Fig.) 43
Modes, odd-symmetric      19 43
Modes, self-reproducing      13 41 42
Molecular absorption bands      172
Morse      25
Multi-mode laser      84
Myers      28 29 47
N-modes with same polarization      140
N-modes, algorithm      141
N-modes, gain saturation equations for      140
N-modes, matrix equations for      140 141
N-modes, method of machine solution for      141
N-modes, ordering      141
N-modes, oscillation frequencies for      140
N-modes, phase shift coefficients for      141
Natural width      5 7
Negative feedback stabilization      163
Neon laser lines, parameters for      157 (Fig.)
Neon, hole burning at 6328 ${\AA}$ in      189 (Fig.)
Neon-helium broadening      157
Neon-neon broadening      157
Net probability, of absorption ($P_{abs}$)      70 73
Net probability, of stimulated emission ($P_{stim}$)      71 72
Noble gas ion lasers      158
Normalization integral, spectral response of      79
Optical pumping, gain dithering by      166
Optimum coupling      33
Orthogonality, non-Hermitian      14
Oscillation frequencies for N-modes      140
Oscillation frequency near line center      120
Oscillation frequency, threshold      104
Oscillator dispersion characteristics      163 (Fig.)
Oscillator frequency with saturable absorber      170
Oscillator frequency, isotope effect      132
Output coupling      33
Output coupling, power      33
Packard      60
Perturbation expansion, method in cavity mode problem      49
Phase dispersion function      145
Phase interruption rates      75
Phase shift coefficient for N modes      141
Phase shift coefficient for pure Gaussian      103
Phase shifts      170
Phase shifts for Doppler broadened limit      103
Phase shifts for gain and absorber      168
Phase shifts for Lorentzian line      98
Phase shifts, cavity      19 (Fig.) 22 28 93
Phase shifts, due to a hole      119
Phase shifts, single-pass      93
Phase-changing collisions      152
Pole      28 29 47
Pollack      22 144 145 146 154
Population densities, effective zero-field      75
Population inversion distribution, hole in      107
Positronium      69n
Positronium, resonance experiments      68
Power broadening      74 146
Power broadening, approximate semi-empirical form for      146
Power dependent beat splitting      90 (Fig.)
Power tuning characteristic      127
Power tuning curve, in the single mode for the two-isotope case      133 (Fig.)
Power tuning curve, isotope effect      132
Power tuning curve, with a saturable absorber      172 (Fig.)
Power-broadened Lorentz width      147
Pressure shifts      154
Probability, flow of      69
Probability, interpretation      64
Projections, spatial Fourier      145
Prokhorov      8 46
Pulsation effects      144
Pulsation terms      144
Q approximation, of cavity      85
Rabinowitz      35 181
Radiating accelerating ion, line shape for      159 (Fig.)
Radiative lifetimes, measurement of      149
Ramsey      67 67n
Ramsey, double field technique of      67n
Rautian      121 123 158 175 196
Rectangular aperture      11 12
Rectangular reflection aperture      39
Refractive index of amplifying transition      92 (Fig.)
Relative excitation      144
Relative phase shift      27 28
Resonance frequencies, Doppler shifted      82
Resonance technique, double field      67
Resonance, absorption      177
Resonance, cavity      139 (Fig.)
Resonance, standing wave      8
Resonance, with phase interruption      68
Resonant interactions      153
Resonator, generating confocal      35
Resonator, split confocal equivalent      29
Rigrod      33 34 35 36
Running waves, gain coefficient for      74
Running waves, hole burning by      178
Sanders      69
Saturable absorber, frequency of oscillator with      170
Saturable absorber, gain curves in      186 (Fig.)
Saturable absorber, gain with      175 (Fig.)
Saturable absorber, hole depths in single-mode with      169
Saturable absorber, mode suppression with      171
Saturable absorber, power tuning curve with      172 (Fig.)
Saturable absorber, self-stabilization by      181
Saturable absorber, threshold hysteresis effects with      184—186
Saturable absorption, mode isolation through      174 (Fig.)
Saturated absorption      178
Saturated gain      178
Scanning cavities, existence of self-reproducing modes in      48
Scanning cavities, problem of      48
Scanning Fabry — Perot analysis      155 (Fig.)
Scanning lasers      29 48
Scanning lasers, computed beam profiles      54
Scanning lasers, computed relative intensity profile in      55
Scanning lasers, computer solutions for      56
Scanning lasers, mode symmetry effects in      52 53
Scanning, confocal problem      55
Scanning, confocal problem, periodic binary type      47 (Fig.)
Scanning, continuous      52
Scanning, continuous, periodic transverse      46
Schawlow      8 9 181
Schoefer      174
Schrodinger equations      64 65
Schrodinger equations for two-frequency case      122
Schwarz      155 191
Schweitzer      109 191
Scully      89
Sealer      150
Self-stabilization effect      182
Self-stabilization effect, by saturable absorbers      181 183
Servo-loop stabilization      176
Shahin      181
Shank      155 191
Shimizu      181
Shimoda      146 162
Single-mode, equations      125
Single-mode, gain saturation in      168
Single-mode, gas laser      131 (Fig.)
Single-mode, hole burning model in      131 (Fig.)
Single-mode, hole depths in      169
Single-mode, hysteresis effect      128 (Fig.)
Single-mode, isotope effect in      129
Single-mode, power tuning curves in      133 (Fig.)
Single-mode, saturable absorber      166—171
Single-mode, tuning curves      37 (Fig.)
Single-mode, tuning dip      118 (Fig.)
Skolnick      171 176
Slepian      22
Small angle ion ion scattering      161
Small signal gain      170
smith      36 46 154 155 156
Sobel'man      121 123 158
SOCHOR      37
Soncini      46
Spatial Fourier projections      145
Spatial switching, binary      46
Spectral purity      89
Spectral response, normalization integral      79
Split confocal equivalent resonator      29
Spontaneous emission bumps, assymmetry in      195 (Fig.)
Spontaneous emission profiles, analysis of      155 (Fig.)
Spot width      26
Square aperture $TEM_{00}$ mode      19
Stabilization by gain modulation      163 164 165
Stabilization, negative feedback      163
Stabilization, reciprocal mutual      177 (Fig.)
Standing wave effects      105
Standing wave resonance condition      8
Strong wave weak wave tuning dips      178—181
Surdutovich      175
Surface of constant phase      26 27 28
Surface of constant phase, condition for      27
Surface of constant phase, radius of curvature      27
Svelto      46
Swept transverse aperture      47
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте