Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Geometric Methods and Applications: For Computer Science and Engineering

Автор: Gallier J.

Аннотация:

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics, which sometimes do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine geometry, projective geometry, Euclidean geometry, basics of differential geometry and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi diagrams and Delaunay triangulations) and explores many of the practical applications of geometry. Some of these applications include computer vision (camera calibration) efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 587

Добавлена в каталог: 13.07.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Diagonalization of a normal linear map      318
Diagonalization of a normal matrix      327
Diagonalization of a self-adjoint linear map      318
Diagonalization of a symmetric matrix      325
Diagonalize a matrix      188
Dieudonne      202 247
Differential geometry      viii 4
Differential geometry of curves      x 415
Differential geometry of surfaces      x 465
Dilatation      71 72
Dilatation of center a and ratio $\lambda$ definition      38
Dilatation, affine      38
Dilatation, central      38 72
Dilation      38
Dimension of a complex      277
Dimension of a projective space      92
Dimension of a projective subspace      95
Dimension of a simplex      275
Dimension of a subspace      24
Dimension of an affine space definition      12
Dirac delta function      191
Direction      7
Direction of an affine subspace definition      24
Dirichlet      270
Dirichlet — Voronoi diagram      267
Dirichlet — Voronoi diagram definition      270
Discrete Fourier Transform      303
Discrete subgroup      392
Discrete subgroup definition      392
Distance      531
Distance between a and      6 180
Distance between points      130
Distance d(a,U)      245
Distance d(U,V)      245
do Carmo      415 466
Dual problem      362
Dual space      126 530
Duality      95
Duality and conies      155
Duality between subspaces      127
Duality Delaunay triangulations, Voronoi diagrams      283
Duality in Euclidean spaces      172
Duality in projective geometry      126 127
Duality in projective plane      128
Dupin      500 509
Dupin indicatrix      493 500
Dupin's theorem      510
Dynamics      7 37
Dynamics, textbook on      7
Edge of regression      449 450
Edges      30
Efficient communication      140
Eigenvalue      202 312 494
Eigenvector      312 494
Eigenvector associated with $\lambda$      202
Element of arc length      473
Element of area      475
ellipse      434 459
Ellipsoid      470
Elliptic point      489 502
Embedded submanifold      391
Embedding a real vector space into a complex vector space      130
Embedding an affine space into a vector space      70 75
Energy function      357
Engineering      vii
Enneper surface      493 511 521 522
Envelope of a conic      155
Equation of a hyperplane      97
Equation of a projective line      144
Equation of the asymptotic lines      511
Equation of the lines of curvature      507
Equations of the geodesies      512 524
Equilibrium equations      360 361
Equivalence relation on pairs of lines      132
Error-correcting codes      140 141
Euclid      1
Euclid's Fifth Postulate      2
Euclidean affine space      163
Euclidean affine space definition      179
Euclidean geometry      viii ix 3 130 162
Euclidean norm, induced by an inner product      167
Euclidean space      163 267 314 415
Euclidean space $\mathbb{E}^\mathrm{n}$      156
Euclidean space definition      164
Euclidean space, generalization to      136
Euclidean structure      163
Euler      4 473 487
Euler parameters      262
Euler rotation matrix      259
Euler — Poincare characteristic      278 279 517
Euler's formula      278 489
Evolute      430 433
Evolute of an ellipse      430
Exponential map      ix 261 309 367 513
Exponential map $\exp: g \to G$      399
Exponential map for a surface patch      514
Exponential of a matrix      239
Extrinsic properties      466 481
Face of a simplex      275
Fairness      454 519
Families of finite support      11
Families of scalars      11
Family of points      18
Family of scalars      18
Family of weighted points      18
Field $\mathbb{R}$ of real numbers      11
Field K arbitrary      11
Field, characteristic of a      11
Finite field      141
Finite projective spaces      141
Finite support      19 72 170
First fundamental form      474 481 486 503
First Fundamental form definition      473
Fixed frame      61
Fixed point      36 58
Fixed point of a projective map      150
Fixed point of an affine map      219
Fixed point of an isometry      197
Flavor      75
Flip      229
Flip about F definition      198
Flip transformations      185 301
Focal length      138
Focal surfaces      527
Focus of projection      138
force      7 11
Formula of Olinde Rodrigues      499
Fourier analysis      165 172
Fourier matrix      301 303
Fourier series      169 191
Fourier transform      172
Frame      7
Frame invariance      10
Frame invariant properties      9
Frame, projective      98
Free vector      8 10 11
Free vector definition      12
Frenet equations      444 446
Frenet frame      440 447 478
Frenet frame definition      440
Frenet matrix      447
Frenet — Serret frame      440
Fresnel integrals      461
From polar form to SVD      341
From SVD to polar form      341
Fulton      93
Function of class $C^p$      417
Fundamental theorem of projective geometry      110
Gallier      vii 70
Gauss      2 4 188 352 481
Gauss formula      517
Gauss map      494 495
Gauss map definition      494
Gauss — Bonnet theorem global version      517
Gauss — Bonnet theorem local version      516
Gauss's “Theorema Egregium”      503 505
Gaussian curvature      465 487 515 522
Gaussian curvature definition      488
General linear group      383
Generalized Frenet — Serret frame      451
Genus      518
Geodesic      511 515 522
Geodesic circle      515
Geodesic curvature      478 483 485 503 512
Geodesic curvature definition      483
Geodesic definition      512
Geodesic line      465 514
Geodesic line definition      512
Geodesic normal vector definition      479
Geodesic polygon      516
Geodesic torsion      507
Geodesic torsion definition      507
Geometric continuity      453 518
Geometric curve (or arc)      420
Geometric curve (or arc) of class $C^p$      420
Geometric modeling      vii
Geometric realization of K      277
Geometry      1
Geometry in the large      465
Geometry in the small      465
Gergonne      127
Gershgorin's theorem      330
Givens — Householder      330
Gram determinant      244 302
Gram — Schmidt orthonormalization      185 296
Gram — Schmidt orthonormalization procedure      176
Gramian      244 302
Grassmann      78
Grassmann's relation      46 96
Grassmannian variety      148
Group homomorphism      38
Group of orientation preserving rigid motions      162
Group of orthogonal transformations      162
Group of rigid motions      162
Group of rigid motions SE(n)      387
Group of rotations      163
Group of rotations SO(3)      249
Group of transformations      3
hadamard      163
Half-sphere $S^n_+$      94
Half-spherical model of projective geometry      94
Hamilton      249
Hamilton identities for the quaternions      250
Hamilton Quaternions      250
Harmonic conjugates      124
Harmonic division      124 135 150
Harmonic division, more on      124
Harris      93
Hat construction      viii 70 74
Hat space $\widehat{E}$ definition      74
Helicoid      475 521
Helly's theorem      29 67
Hermitian form definition      289
Hermitian form, positive      290
Hermitian form, positive definite      290
Hermitian geometry      ix 287
Hermitian inner product      169
Hermitian norm      293
Hermitian space      287
Hermitian space definition      290
hilbert      416
Hilbert and Cohn-Vossen      114 466 502 510 511
Hilbert curve      416 457
Hilbert space      ix 173 295
Hippocrates      1
Holes in a surface      518
Homogeneous coordinates      99
Homogeneous coordinates definition      99
Homogeneous equation of a conic      53
Homogeneous polynomial      102 131
Homogenization      70
Homogenization of an affine space definition      83
Homogenizing      88
Homography      106
Homology of center O and of axis $\Delta$      160
Homology of center O and of plane of homology $\Pi$      160
Homomorphism of Lie algebras      403
Homomorphism of Lie groups      403
Homothety definition      38
Hopf fibration      143
Householder matrices      186 197 329
Householder matrices definition      200
Hyperbolic functions      476
Hyperbolic point      489 502 521
Hyperplane      63 71 95 132 173 295 530
Hyperplane at infinity      112 114 118
Hyperplane model of projective geometry      94
Hyperplane symmetry definition      198
Hyperplane, affine      44 71
Hypersurface V(P)      131
Image center      138
Image Im f of f      334
Image plane      138
Immersion      472
Improper isometry      185 301
Improper orthogonal transformation      185
Improper unitary transformation      301
Independence, affine      26
Independence, linear      26
Infinitesimal transformations      367
Inflection point      455
Injective affine map      35
Inner product      3 163
Inner product definition      164
Inner product, Hermitian      249
Interior of a simplex      275
Interpolant      262
Intersection of affine spaces      7
Intersection of affine subspaces      46
Intersection of algebraic curves      88
Intrinsic manner      10
Intrinsic properties      466 481
Invariants of a curve      447
Inverse discrete Fourier transform      303
inversion      158 190 196
Inversion of pole a and power k      156
Involute      433 462 528
Involution      150 151
Irreducible curves      105
Irreducible polynomials      105
Isolated point      392
Isometry      175
Isometry w.r.t. $\phi$      194
Isomorphism $\psi: \left(\mathbb{R}^3, \times \right) \to \textrm{so}\left(3\right)$      400
Isomorphism $\varphi: \left(\mathbb{R}^3, \times \right) \to \textrm{su}\left(2\right)$      401
Isomorphism of Lie algebras      403
Isomorphism of Lie groups      403
Isotropic line      136 137
Isotropic line definition      133
Isotropic vector      173 246
Jacobi identity      399 404 407
Jacobian determinant      472
Joint screw      405
JORDAN      336
Jordan arc      419
Jordan curve      420
Kernel of a Hermitian form      306
Kernel of a symmetric bilinear form      194
Kernel of an affine form definition      44
Kernel of an affine map      44
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте