Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fox R.O. — Computational Models for Turbulent Reacting Flows
Fox R.O. — Computational Models for Turbulent Reacting Flows



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computational Models for Turbulent Reacting Flows

Àâòîð: Fox R.O.

Àííîòàöèÿ:

This survey of the current state of the art in computational models for turbulent reacting flows carefully analyzes the strengths and weaknesses of the various techniques described. Rodney Fox focuses on the formulation of practical models as opposed to numerical issues arising from their solution. He develops a theoretical framework based on the one-point, one-time joint probability density function (PDF). The study reveals that all commonly employed models for turbulent reacting flows can be formulated in terms of the joint PDF of the chemical species and enthalpy.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 419

Äîáàâëåíà â êàòàëîã: 09.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Mixture-fraction PDF from FP model      282—283
Mixture-fraction PDF, conditional scalar dissipation rate      211 213
Mixture-fraction PDF, LES      109
Mixture-fraction PDF, mixture-fraction covariances      174
Mixture-fraction PDF, mixture-fraction means      174
Mixture-fraction PDF, presumed      110 174—177 207 209 211 216
Mixture-fraction PDF, presumed, bi-variate beta      176
Mixture-fraction PDF, presumed, limitations      175
Mixture-fraction PDF, presumed, multi-variate      176
Mixture-fraction PDF, presumed, uni-variate beta      175
Mixture-fraction PDF, relationship to CMC      209
Mixture-fraction PDF, relationship to composition PDF      68
Mixture-fraction PDF, relationship to equilibrium-chemistry limit      179—180
Mixture-fraction PDF, relationship to flamelet model      205 206
Mixture-fraction PDF, transport equation in homogeneous flow      212
Mixture-fraction vector      109 141 156—179 181 183 193 201 211 212 216 221 222 232—234 282—284
Mixture-fraction vector in CMC      207
Mixture-fraction vector, allowable region      282
Mixture-fraction vector, definition      161—168
Mixture-fraction vector, definition, initial/inlet conditions      167
Mixture-fraction vector, definition, linear mixture      161 162
Mixture-fraction vector, definition, linear-mixture basis      161 166
Mixture-fraction vector, definition, mixture-fraction basis      164
Mixture-fraction vector, definition, transformation matrix      167
Mixture-fraction vector, example flows      168—174
Mixture-fraction vector, filtered      239
Mixture-fraction vector, general formulation      157—161
Mixture-fraction vector, linear mixture      163
Mixture-fraction vector, PDF      174—177
Mixture-fraction vector, principle of linear superposition      157
Mixture-fraction vector, relationship to initial/inlet conditions      157
Mixture-fraction vector, relationship to linear mixture      167
Mixture-fraction vector, relationship to reaction-progress vector      166
Mixture-fraction vector, residual      239
Molecular diffusion      10 13 23 47 56—58 65 72 78 109—111 113 125 136 149 198 199 239 262 268 269 287 363
Molecular diffusion, coefficients      90 111 146 149 264 267 272 276
Molecular diffusion, differential diffusion      135 267
Molecular diffusion, effect on composition PDF      65 104 240 242 249
Molecular mixing models      24 114 250 262 264—266 272 273 275 281 293 351
Molecular mixing models, constraints      262—263
Molecular mixing models, constraints, on correlation with velocity field      262
Molecular mixing models, constraints, on joint scalar dissipation rate      262
Molecular mixing models, constraints, on scalar means      262
Molecular mixing models, desirable properties      263—265
Molecular mixing models, desirable properties, boundedness      264
Molecular mixing models, desirable properties, dependence on scalar length scales      264
Molecular mixing models, desirable properties, Gaussian limit      264
Molecular mixing models, desirable properties, linearity      264
Molecular mixing models, desirable properties, local mixing      264
Molecular mixing models, desirable properties, Re, Sc, and Da dependence      264
Molecular mixing models, prospects for further improvements      286—287
Moment closures      156
Moment closures, chemical source term      90 91 125 150 151 153—156
Moment closures, chemical source term, first-order      153—155
Moment closures, chemical source term, higher-order      155—156
Moment closures, conditional      207—216
Moment closures, scalar fields      123—127 193
Moment closures, velocity field      114—120
Monte-Carlo simulation      26 259 287 298 328 344—348 357—358
Monte-Carlo simulation, boundary conditions      346—348
Monte-Carlo simulation, fractional time stepping      345
Monte-Carlo simulation, relationship to DQMOM      373 383 385
Monte-Carlo simulation, stochastic differential equations      344 345
Monte-Carlo simulation, use in transported PDF codes      240
Multi-environment conditional PDF models      233—236
Multi-environment conditional PDF models, one-step reaction      235
Multi-environment conditional PDF models, relationship to CMC      236
Multi-environment presumed PDF models      221—239
Multi-environment presumed PDF models, conditioned on mixture fraction      233—236
Multi-environment presumed PDF models, extension to LES      237—239
Multi-environment presumed PDF models, general formulation      222—226
Multi-environment presumed PDF models, inhomogeneous flows      226—233
Multi-environment presumed PDF models, micromixing terms      222
Multi-environment presumed PDF models, presumed PDF      222
Multi-environment presumed PDF models, relationship to DQMOM      383—384
Multi-environment presumed PDF models, relationship to micromixing models      221
Multi-environment presumed PDF models, spurious dissipation rate      226
Multi-environment presumed PDF models, ternary mixing      232
Navier — Stokes equation      16 27 40 41 67 74 82 100 111 244 292
Navier — Stokes equation, definition      101
Navier — Stokes equation, filtered      104—107
Navier — Stokes equation, Fourier-transformed      101
Navier — Stokes equation, Reynolds-averaged      17 102 114 253
Non-equilibrium models      54 62 71 78 85 118 127 201
Non-equilibrium models, differential diffusion      135—139 325—326
Non-equilibrium models, reacting scalars      326—327
Non-equilibrium models, scalar dissipation rate      127—135 322—325
Non-premixed reactants      2—5 13 14 23 24 58 125 126 141 168 170 172 194 206 212 229 271 284 286 310 326
Non-premixed reactants, binary mixing      161
Non-premixed reactants, relationship to mixture fraction      156
Non-premixed reactants, ternary mixing      161
Notional particles      240 287—289 298—300 309 310 323 328—330 332 335—339
Notional particles in Eulerian PDF codes      331—332
Notional particles in Lagrangian PDF codes      340—344 356—357
Notional particles in Lagrangian PDF methods      287
Notional particles, initial distribution      290
Notional particles, particle-field estimation      298—300 348—352
Notional particles, relationship to computational cost      339 353 360
Notional particles, relationship to empirical PDF      300—302 330
Notional particles, relationship to Eulerian PDF      290—292
Notional particles, spatial distribution      290 339
Notional particles, stochastic differential equations      288
Notional particles, weights in PDF codes      330 339 342—343
Obukhov — Corrsin constant      73 75
Obukhov — Corrsin constant, relationship to mechanical-to-scalar time-scale ratio      73
One-point PDF      22 26 29—32 69 107 205 240 246 271
One-point PDF, composition      18 22 62 64—67 242 243 262
One-point PDF, mixture-fraction      174—177
One-point PDF, velocity      29—32 107
One-point PDF, velocity, composition      44—45 62—64 67 81 84 140 240 241 245 246
One-step reaction      103 110 154 181—184 202 235 272 273 326
One-step reaction, allowable region      266
One-step reaction, fast-chemistry limit      154
One-step reaction, finite-rate      210
One-step reaction, flamelet model      201
One-step reaction, infinite-rate      154 184 271
One-step reaction, limiting cases      183
One-step reaction, mixture fraction      183
One-step reaction, moment closure      155
One-step reaction, non-isothermal      184 201 203 233 235 268
One-step reaction, presumed CMC      209
One-step reaction, reaction-progress variable      183
Parallel reactions      181 189—193 210
Parallel reactions, limiting cases      190 191
Parallel reactions, mixing line      191 192
Parallel reactions, mixture fraction      189
Parallel reactions, reaction-progress variables      189
Parallel reactions, sensitivity to micromixing      192 193
Particle transport processes      332—335 344—348 357—358
Particle transport processes, Eulerian PDF codes      332—335
Particle transport processes, Eulerian PDF codes, inter-cell      332—335
Particle transport processes, Eulerian PDF codes, intra-cell      332
Particle transport processes, Eulerian PDF codes, numerical diffusion      336—337
Particle transport processes, Lagrangian PDF codes      344—348 357—358
Particle transport processes, Lagrangian PDF codes, boundary conditions      346—348
Particle transport processes, Lagrangian PDF codes, Monte-Carlo simulation      344—346 357—358
Particle-field estimation      298—308 332 340 341 343—346 348—352 358—359
Particle-field estimation in Lagrangian PDF codes      348—352 358—359
Particle-field estimation, bi-linear basis functions      350
Particle-field estimation, consistency      358—359
Particle-field estimation, empirical PDF      300—302
Particle-field estimation, estimation errors      302—307
Particle-field estimation, global estimators      350 351
Particle-field estimation, global estimators, GLME      350
Particle-field estimation, local estimators      349
Particle-field estimation, local estimators, LCME      349
Particle-field estimation, local estimators, LLME      351
Particle-field estimation, notional particles      298—300
Particle-field estimation, PDF estimation      307—308
PDF estimation      307—308
PDF estimation, bi-variate      20
PDF estimation, uni-variate      19
PDF in DQMOM      373
PDF in QMOM      372
PDF simulation codes      328—362
PDF simulation codes, Eulerian      331—339
PDF simulation codes, hybrid      354—361 see composition
PDF simulation codes, Lagrangian      340—354
PDF simulation codes, overview      329—331
PDF, beta, bi-variate      176
PDF, beta, uni-variate      175
PDF, Eulerian      29 34
Pdf, joint      8
PDF, Lagrangian      288
PDF, LES composition      109
PDF, LES velocity      106—108
PDF, LES velocity, composition      109
PDF, marginal      30
PDF, mixture-fraction, dissipation rate      205—206
PDF, multi-point      32
PDF, multi-variate      30
PDF, transport equation, composition      249—251 374
PDF, transport equation, velocity      255
PDF, transport equation, velocity, composition      244—249
PDF, turbulence frequency      322
PDF, two-point      29 32
PDF, two-time      45
PDF, uni-variate      29
PFR model      3 5—7 9 10 13 14 194 197
Premixed reactants      2 3 125 161 207 216 269—272 286
Presumed PDF methods      141 174 175 205 216—221
Presumed PDF methods, multi-environment models      221—239
Presumed PDF methods, multi-environment models in DQMOM      383
Presumed PDF methods, multi-environment models in QMOM      372
Presumed PDF methods, multi-environment models, conditional      233—236
Presumed PDF methods, multi-environment models, formulation      222—226
Presumed PDF methods, multi-environment models, inhomogeneous flows      226—233
Presumed PDF methods, multi-environment models, LES      237—239
Presumed PDF methods, multiple scalars      218—221
Presumed PDF methods, multiple scalars, Gaussian PDF      220
Presumed PDF methods, multiple scalars, limitations      221
Presumed PDF methods, single scalar      216—218
Presumed PDF methods, single scalar, conditional PDF      217
Presumed PDF methods, single scalar, limitations      217
QMOM      372—373
QMOM, presumed PDF      372
QMOM, product-difference algorithm      373
QMOM, relationship to DQMOM      373
QMOM, relationship to scalar moments      372
Random field      27 44 69 242 245 246 288
Random field, scalar      62 63
Random field, velocity      27—29 32 62 107 108
Random process      27 28 64 249 297
Random process, Eulerian      63
Random process, Lagrangian      63
Random variables      29 108 241 249
Random variables, Gaussian      31
Random variables, relationship to sample space      29
RANS models      17 106 110 114—127
RANS models, mean velocity      114
RANS models, relationship to LEM      111 112
RANS models, relationship to LES      104
RANS models, relationship to PDF methods      243 249 252—254 354 360
RANS models, relationship to PDF methods, mean velocity, derivation of transport equation      252—253
RANS models, relationship to PDF methods, Reynolds stresses, derivation of transport equation      254 354
RANS models, Reynolds stresses      117—120
RANS models, scalar dissipation rate      126—127
RANS models, scalar dissipation rate, equilibrium model      126
RANS models, scalar dissipation rate, non-equilibrium models      127—135
RANS models, scalar flux      123—125
RANS models, scalar flux, consistency with Reynolds-stress model      124
RANS models, scalar flux, effect of chemical reactions      125
RANS models, scalar flux, gradient-diffusion      122 123
RANS models, scalar flux, modified gradient-diffusion      122
RANS models, scalar mean      120
RANS models, scalar variance      125—126
RANS models, turbulence frequency      116
RANS models, turbulent dissipation rate      116
RANS models, turbulent kinetic energy      115
RANS models, turbulent viscosity      116
RANS models, turbulent-diffusivity-based      121—122
RANS models, turbulent-diffusivity-based, turbulent diffusivity      122
RANS models, turbulent-viscosity-based      114—116
RANS models, turbulent-viscosity-based, $\kappa-\omega$ model      116
RANS models, turbulent-viscosity-based, $\kappa-\varepsilon$ model      115
RANS models, turbulent-viscosity-based, one-equation      115
RANS models, turbulent-viscosity-based, two-equation      115
Reaction mapping      313—314
Reaction mapping, direct integration      314
Reaction mapping, Jacobian      312 313
Reaction mapping, linearized      314—316
Reaction mapping, linearized, conserved manifold      315
Reaction mapping, linearized, fast manifold      315
Reaction mapping, linearized, sensitivity matrix      315
Reaction mapping, linearized, slow manifold      315
Reaction mapping, linearized, use in ISAT      316
Reaction-progress variables      169 171 173 181—183 205 207 209 210 216—221 235 236 266 268 272 286
Reaction-progress variables, competitive-consecutive reactions      185
Reaction-progress variables, conditional      209 239
Reaction-progress variables, filtered      239
Reaction-progress variables, flamelet model      203
Reaction-progress variables, initial/inlet conditions      183 204
Reaction-progress variables, one-step reaction      183
Reaction-progress variables, parallel reactions      189
Reaction-progress variables, relationship to reaction-progress vector      166
Reaction-progress variables, simple chemistry      181
Reaction-progress variables, transport equation      203
Reaction-progress vector      156 166 167 171 209 212 221 233 284 286
Reaction-progress vector, conditional      214 233
Reaction-progress vector, equilibrium      178 207
Reaction-progress vector, example flows      168—174
Reaction-progress vector, initial/inlet conditions      166 167
Reaction-progress vector, relationship to mixture-fraction vector      166
Reaction-progress vector, transformation matrix      166
Reaction-progress vector, transport equation      177
Reynolds number, Kolmogorov      35
Reynolds number, Taylor-scale      34 35
Reynolds number, turbulence      34—36
Reynolds number, turbulent      365
Reynolds stresses      30 37 48—51 55 82 83 90 104 106 107 114 123 243 253 259 261 354—356 358
Reynolds stresses, anisotropy tensor      118
Reynolds stresses, dissipation rate tensor      50
Reynolds stresses, effect on mean pressure      48
Reynolds stresses, effect on mean velocity      47
Reynolds stresses, normal stresses      48
Reynolds stresses, pressure-diffusion term      50
Reynolds stresses, pressure-rate-of-strain tensor      50
Reynolds stresses, production term      49
Reynolds stresses, relationship to energy spectrum      36
Reynolds stresses, shear stresses      48
Reynolds stresses, transport equation      83
Reynolds stresses, transport equation, consistency with scalar flux      123 259
Reynolds stresses, transport equation, derivation      48—51
Reynolds stresses, transport equation, models      117—120
Reynolds stresses, transport equation, relationship to PDF methods      254 256—258
Reynolds stresses, turbulent-viscosity model      115
Reynolds stresses, velocity-pressure-gradient term      50
RTD theory      3 4 8—10 12 25 194
RTD theory, internal-age distribution in CSTR      13
RTD theory, internal-age distribution in PFR      13
RTD theory, relationship to micromixing models      10 12
RTD theory, relationship to PDF methods      8
RTD theory, RTD function      8
RTD theory, RTD function, in CSTR      8
RTD theory, RTD function, in PFR      8
Sample space variables      9 29 308
Sample space variables, composition      9 62
Sample space variables, velocity      27 29 44 63 80
Scalar correlation      96 98 99 136—139 218 221 267 277—279 282 284 297
Scalar correlation in FP model      277
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå