Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fox R.O. — Computational Models for Turbulent Reacting Flows
Fox R.O. — Computational Models for Turbulent Reacting Flows



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computational Models for Turbulent Reacting Flows

Àâòîð: Fox R.O.

Àííîòàöèÿ:

This survey of the current state of the art in computational models for turbulent reacting flows carefully analyzes the strengths and weaknesses of the various techniques described. Rodney Fox focuses on the formulation of practical models as opposed to numerical issues arising from their solution. He develops a theoretical framework based on the one-point, one-time joint probability density function (PDF). The study reveals that all commonly employed models for turbulent reacting flows can be formulated in terms of the joint PDF of the chemical species and enthalpy.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 419

Äîáàâëåíà â êàòàëîã: 09.08.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Estimation errors in mean-field estimation      300—307
Estimation errors in particle-field estimation      298
Estimation errors in PDF estimation      308
Estimation errors, deterministic      300—302 305—307 341
Estimation errors, deterministic, bias      298 300 301 306 328 352 359
Estimation errors, deterministic, discretization      300 301 305 306 328 329 359
Estimation errors, statistical      295 298 300—302 306 328 329 332 337—339 341 342 352 353 359
Eulerian composition PDF codes      329—339 343 352 353 360
Eulerian composition PDF codes, advantages and disadvantages      339
Eulerian composition PDF codes, local time stepping      338
Eulerian composition PDF codes, numerical diffusion      336—337
Eulerian composition PDF codes, particle transport processes      332—335
Eulerian composition PDF codes, relationship to empirical PDF      332
Eulerian composition PDF codes, time averaging      338
Eulerian correspondence      293
Flame-sheet example      268—270
Flamelet model      142 201—207 264 271 272 285
Flamelet model, conditional scalar dissipation rate      204
Flamelet model, definition      201—204
Flamelet model, differential diffusion      135
Flamelet model, flamelet library      206
Flamelet model, inhomogeneous flow      206—207
Flamelet model, limitations      206 207
Flamelet model, mixture-fraction, dissipation rate PDF      205—206
Flamelet model, relationship to FP model      277
Flamelet model, stationary      204—205
Flamelet model, transport equation, stationary      204
Flamelet model, transport equation, unstationary      204
Fluid particles      5 9 13 27 63 113 121 188 194 195 197—201 215 216 269 270 273 285 289—290 323 331 335
Fluid particles, relationship to Eulerian PDF      290
Fluid particles, relationship to Lagrangian PDF      289
Fluid particles, relationship to notional particles      289
FM approach      2 3 15—24 197
FM approach, chemical source term      18—23
FM approach, composition PDF      22
FM approach, fundamental transport equation, pressure field      17
FM approach, fundamental transport equation, reacting scalars      16
FM approach, fundamental transport equation, velocity      16
FM approach, fundamental transport equations      16—17
FM approach, molecular mixing      23—24
FM approach, relationship to CRE approach      16 24
FM approach, turbulence models      17—18
Fokker — Planck equation      251 288
Fokker — Planck equation, boundary conditions      280
Fokker — Planck equation, FP model      275 276
Fokker — Planck equation, Lagrangian PDF      288 294
Fokker — Planck equation, stationary solution      285
Fokker — Planck equation, velocity PDF      256
Fokker — Planck equation, velocity, composition PDF      291
FP model      264 266 267 270 271 273 275—287 325—327 377
FP model for mixture-fraction vector      282—283 286
FP model, conditional gradient-correlation matrix      279
FP model, conditional joint scalar dissipation rate      266 277 279
FP model, conditional scalar dissipation rate      276
FP model, constraints and desirable properties      280—281
FP model, differential diffusion      280 326
FP model, Lagrangian      297 325 345
FP model, limiting cases      271 279 284—285
FP model, multiple scalars      276
FP model, relationship to CMC      285 286
FP model, relationship to GIEM      268
FP model, relationship to IEM      277
FP model, relationship to mapping closure      281—282
FP model, scalar covariance      277
FP model, shape matrix      266 272 281 327
FP model, single scalar      276
FP model, stochastic differential equation      278
Fractional time stepping      309 310 332 340 345 346
Full PDF methods      241 see
Gaussian PDF      23 24 30 63—65 108 175 176 214 219—221 227 251 256 261 262 264—267 275—277 281 295 378
Gaussian PDF, conditional expected values      32
Gaussian PDF, correlation function      32
Gaussian PDF, covariance matrix      30
Gaussian PDF, eigenvector transformation      220
Gaussian PDF, functional form      30
Gaussian PDF, mean vector      30
Gaussian PDF, properties of      31
GIEM model      267 273
GLM      257—258 292
GLM, definition      257
GLM, extension to velocity, composition PDF      258—259
GLM, Lagrangian      295 296
GLM, relationship to Reynolds-stress models      258
GLM, relationship to scalar-flux model      258
Higher-order PDF models      321—327
Higher-order PDF models, differential diffusion      325—326
Higher-order PDF models, LSR model      322—327
Higher-order PDF models, reacting scalars      326—327
Higher-order PDF models, turbulence frequency      321—322
Hybrid PDF codes      see "Velocity composition
IEM model      13 14 23 24 194—197 264 267 269 270 274—276 281 296 340 373 377 378 383 384 386
IEM model for conditional diffusion      273 274
IEM model for CSTR      13 14 194—195
IEM model for PFR      13
IEM model, constraints and desirable properties      275
IEM model, flame-sheet example      269
IEM model, Lagrangian      296 297 308 345 348 350
IEM model, relationship to FP model      277
IEM model, relationship to VCIEM model      275
Inertial range      38—42 51 53—55 58 59 73—75 79 104 106 129 198
Inertial-convective sub-range      73 79 87 126—129 365 368
Inertial-diffusive sub-range      73 74
Integral scale      20 60 76 102 121 131 259 266 271
Integral scale, scalar      20 57 70 72 77 95 127 134 197
Integral scale, velocity      33—35 37 38 40 54 57 59—61 99 113 120 121 127 197 305 308
Intensity of segregation      65 66 72
ISAT      312—321
ISAT, binary-tree tabulation      318—319
ISAT, ellipsoid of accuracy      316—318
ISAT, flow diagram      318
ISAT, further improvements      319—321
ISAT, further improvements, dimension reduction      320
ISAT, further improvements, parallelization      321
ISAT, linear interpolation      314—316
ISAT, reaction mapping      313—314
Joint scalar dissipation rate      80 91—96 251 262 265—267 270 280 281 285
Joint scalar dissipation rate in SR model      135
Joint scalar dissipation rate, conditional      211 212 270 276
Joint scalar dissipation rate, Da dependence      152
Joint scalar dissipation rate, definition      90
Joint scalar dissipation rate, effect of chemical reactions      91 95 271 286
Joint scalar dissipation rate, fluctuating      93 271
Joint scalar dissipation rate, non-equilibrium models      135—137
Joint scalar dissipation rate, Re dependence      95
Joint scalar dissipation rate, relationship to FP model      275 277
Joint scalar dissipation rate, relationship to mixing models      262
Joint scalar dissipation rate, role in differential diffusion      91 97
Joint scalar dissipation rate, spectral model      95
Joint scalar dissipation rate, transport equation      93
Joint scalar dissipation rate, transport equation, derivation      92—93
Joint scalar dissipation rate, transport equation, model      136 327
Kernel function      301 348 349
Kernel function, constant      301 302 349
Kernel function, grid cell      301 307 341 349
Kernel function, use in empirical PDF      301
Kolmogorov scale      15 34 35 43 50 57 59 60 73 74 76 89 101 102 105 125 129 153 197—199 201 202 327 365
Lagrangian composition PDF codes      329 339—354
Lagrangian composition PDF codes, advantages and disadvantages      353—354
Lagrangian composition PDF codes, boundary conditions      346—348
Lagrangian composition PDF codes, coupling to FV codes      340
Lagrangian composition PDF codes, flow diagram      343 344
Lagrangian composition PDF codes, local time stepping      353
Lagrangian composition PDF codes, Monte-Carlo simulation      344—346
Lagrangian composition PDF codes, notional-particle representation      340—344
Lagrangian composition PDF codes, particle weights      342—343
Lagrangian composition PDF codes, particle-held estimation      348—352
Lagrangian correspondence      293
Lagrangian micromixing models      4 10 12—14 66 193—201 221 226 239 240 242 271
Lagrangian micromixing models, age-based      13 195—196
Lagrangian micromixing models, IEM      13—14
Lagrangian micromixing models, IEM, for CSTR      14 194—195
Lagrangian micromixing models, IEM, for PFR      13
Lagrangian micromixing models, inhomogeneous flows      200—201
Lagrangian micromixing models, mechanistic      198—200
Lagrangian micromixing models, micromixing rate      197—198
Lagrangian micromixing models, relationship to composition PDF      25 195 251
Lagrangian PDF methods      63 100 135 241 256 287—298 329 340 368
Lagrangian PDF methods, Eulerian correspondence      293
Lagrangian PDF methods, fluid particles      289—290
Lagrangian PDF methods, Lagrangian correspondence      293
Lagrangian PDF methods, mixing models      296—298
Lagrangian PDF methods, notional particles      287—289
Lagrangian PDF methods, notional particles, spatial distribution      290
Lagrangian PDF methods, relationship to Eulerian PDF methods      290—292
Lagrangian PDF methods, stochastic differential equations      292—294
Lagrangian PDF methods, velocity PDF closures      294—296
Laminar diffusion flamelets      201—207
Length scales, scalar      69—71
Length scales, scalar, Batchelor      57 see
Length scales, scalar, dependence on initial conditions      57
Length scales, scalar, integral      70 72 see scalar"
Length scales, scalar, phenomenological model      58—62
Length scales, scalar, Sc dependence      57 71
Length scales, scalar, Taylor microscale      70 see scalar"
Length scales, scalar-to-velocity length-scale ratio      61 77
Length scales, turbulence      33—34 36
Length scales, turbulence, integral      34 35 see velocity"
Length scales, turbulence, integral, longitudinal      33
Length scales, turbulence, integral, transverse      33
Length scales, turbulence, Kolmogorov      34 35 see
Length scales, turbulence, Re dependence      34
Length scales, turbulence, Taylor microscales      33 35 see velocity"
Length scales, turbulent mixing      57—58
LES      104—110
LES, CMC      214
LES, composition PDF      109
LES, equilibrium-chemistry limit      180
LES, filtered, chemical source term      110
LES, filtered, density function      108
LES, filtered, Navier — Stokes equation      104—106
LES, filtered, scalar held      108
LES, filtered, strain rate      106
LES, filtered, velocity held      105
LES, filtering function      104 105
LES, filtering function, effect on energy spectrum      105
LES, filtering function, kernel      349
LES, filtering function, positive      108
LES, filtering function, sharp-spectral      104
LES, gradient-diffusion model      109
LES, mixture fraction      179
LES, mixture-fraction PDF      109
LES, modified filtered pressure      106
LES, multi-environment PDF models      110
LES, reacting flow      109—110 113
LES, relationship to DNS      104
LES, relationship to RANS      104 114
LES, residual, kinetic energy      107
LES, residual, mixture-fraction variance      110 238
LES, residual, mixture-fraction-variance dissipation rate      238
LES, residual, Reynolds stresses      107
LES, residual, scalar field      109
LES, residual, scalar flux      108 109 238
LES, residual, scalar variance      109
LES, residual, stress tensor      105 106
LES, residual, velocity field      106
LES, scalar transport      108—109
LES, SGS turbulent diffusivity      109 238
LES, Smagorinsky model      106
LES, velocity PDF      106—108
LES, velocity, composition PDF      109
LES-PDF methods      106—110 260—261
LES-PDF methods, composition PDF      109
LES-PDF methods, composition PDF codes      329 340 341 354
LES-PDF methods, computational cost      261
LES-PDF methods, DQMOM      384
LES-PDF methods, relationship to composition PDF models      110
LES-PDF methods, relationship to FDF approach      108
LES-PDF methods, relationship to multi-environment PDF models      237—239
LES-PDF methods, velocity PDF      106—108
LES-PDF methods, velocity, composition PDF      109
Linear-eddy model      110—114 199 239 287
Linear-eddy model, homogeneous flows      111—112
Linear-eddy model, inhomogeneous flows      113—114
Linear-eddy model, Lagrangian LEM      113
Linear-eddy model, relationship to DNS      111 113
Linear-eddy model, relationship to PDF methods      113
Linear-eddy model, relationship to RANS      112
Linear-eddy model, triplet map      111
Location-conditioned statistics      308 329 358 359
Location-conditioned statistics in LFP model      297
Location-conditioned statistics in LGLM      295—296
Location-conditioned statistics in LIEM model      297
Location-conditioned statistics in LVCIEM model      297
Location-conditioned statistics in mixing models      296—297
Location-conditioned statistics in particle-pressure-field equation      295
Location-conditioned statistics in velocity PDF closures      294—296
Location-conditioned statistics, estimation errors      302—307
Location-conditioned statistics, estimation methods      299—302
Location-conditioned statistics, use in Lagrangian PDF methods      288—292
Lookup tables      240 310—321 330 346
Lookup tables, binary-tree tabulation      318—319
Lookup tables, flamelet library      206
Lookup tables, ILDM      312
Lookup tables, ISAT      312—321
Lookup tables, pre-computed      310—312
Lookup tables, use in equilibrium-chemistry limit      178—180
LSR model      322—327
LSR model, conditional joint scalar dissipation rate      325
LSR model, conditional scalar covariances      325
LSR model, conditional scalar dissipation rate      322
LSR model, conditional scalar variances      323
LSR model, coupling to turbulence frequency model      323
LSR model, differential diffusion      325—326
LSR model, joint-scalar-dissipation chemical source term      327
LSR model, reacting scalars      326—327
LSR model, relationship to FP model      282 327
LSR model, relationship to SR model      135
LSR model, spectral transfer rates      323 324
Mean pressure field      48 295 296 355
Mean pressure field, coupling with PDF transport equation      259—260
Mean pressure field, relationship to particle pressure field      295
Mean velocity field      11 17 27 28 30 37 40 41 47—49 51 53 55 83 85 87 101 106 116 120—123 126 132 195 250 251 254 259 294 296 298 300 329 331—337 340 341 345—347 352 356 361
Mean velocity field, transport equation      47 252—253 259 295 296
Mean-field estimation, errors      300—307
Mean-field estimation, relationship to empirical PDF      300
Mechanical-to-scalar time-scale ratio      77 78 127 130 368
Mechanical-to-scalar time-scale ratio, definition      76
Mechanical-to-scalar time-scale ratio, Re and Sc dependence      77
Mechanical-to-scalar time-scale ratio, relationship to Obukhov — Corrsin constant      73
Mechanical-to-scalar time-scale ratio, time dependence      128 131
Mesomixing      57 197 198
Micromixing models      4 10 12—14 16 23 25 66 239 240 242 271
Micromixing models, age-based      195—196
Micromixing models, coalescence-redispersion      12
Micromixing models, DQMOM      383
Micromixing models, DQMOM-IEM      386
Micromixing models, IEM      13 14 194—195
Micromixing models, inhomogeneous flows      200—201
Micromixing models, Lagrangian      193—201 251
Micromixing models, maximum-mixedness      12
Micromixing models, mechanistic      198—200
Micromixing models, micromixing rate      197—198
Micromixing models, minimum-mixedness      12
Micromixing models, multi-environment      12
Micromixing time      4 13—15 25 153 308 338
Micromixing time in definition of Da      152
Micromixing time in IEM model      13 194
Micromixing time, dependence on initial conditions      15
Micromixing time, relationship to scalar dissipation rate      14—15
Mixture-fraction PDF      68 142 156 161 166 172 174—177 179 180 184 193 197 200 205 210 212—216 233 234 285
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå