Авторизация
Поиск по указателям
Barrett R. — Templates for the solution of linear systems: building blocks for iterative methods
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Templates for the solution of linear systems: building blocks for iterative methods
Автор: Barrett R.
Аннотация: In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire.
Templates have three distinct advantages: they are general and reusable, they are not language specific, and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide a mathematical description of the flow of the algorithm, discussion of convergence and stopping criteria to use in the iteration, suggestions for applying a method to special matrix types, advice for tuning the template, tips on parallel implementations, and hints as to when and why a method is useful.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1993
Количество страниц: 124
Добавлена в каталог: 19.06.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Ad hoc SOR method See method ad
Asynchronous method See method asynchronous
Bi-CGSTAB method See method Bi-CGSTAB
Bi-conjugate gradient stabilized method See method Bi-CGSTAB
Bi-orthogonality in BiCG 22
Bi-orthogonality in QMR 23
BiCG method See method BiCG
Biconjugate gradient method See method BiCG
BLAS 2 73
Block methods 84—85
Breakdown avoiding by look-ahead 22
Breakdown in Bi-CGSTAB 28
Breakdown in BiCG 22 23
Breakdown in CG for indefinite systems 17
CG method See method CG
CGNE method See method CGNE
CGNR method See method CGNR
CGS method See method CGS
Chaotic method See method asynchronous
Chebyshev iteration See method Chebyshev
Codes, FORTRAN 2
Codes, MATLAB 2
Complex systems 57
Conjugate gradient method See method CG
Conjugate Gradient Squared method See method CGS
Convergence of Bi-CGSTAB 28
Convergence of BiCG 22—23
Convergence of CG 16
Convergence of CGNR and CGNE 18
Convergence of CGS 26
Convergence of Chebyshev iteration 29
Convergence of Gauss — Seidel 10
Convergence of Jacobi 8 9
Convergence of MINRES 17
Convergence of QMR 25
Convergence of SSOR 12
Convergence, irregular 100
Convergence, irregular, of BiCG 22—23 25
Convergence, irregular, of CGS 26 27
Convergence, linear 99
Convergence, smooth 100
Convergence, smooth, of Bi-CGSTAB 28
Convergence, stalled 100
Convergence, stalled, of BiCG 25
Convergence, stalled, of GMRES 19
Convergence, superlinear 99
Convergence, superlinear, of BiCG 29
Convergence, superlinear, of CG 16
Convergence, superlinear, of GMRES 29
Data structures 63—76
Diffusion, artificial 47
Domain decomposition, multiplicative Schwarz 90 91
Domain decomposition, non-overlapping subdomains 88—90
Domain decomposition, overlapping subdomains 87 88
Domain decomposition, Schur complement 86
Domain decomposition, Schwarz 86
Fill-in strategies See preconditioned point
FORTRAN codes See codes FORTRAN
Gauss — Seidel method See method Gauss
Generalized minimal residual method See method GMRES
GMRES method See method GMRES
Ill-conditioned systems using GMRES on 21
Implementation of Bi-CGSTAB 28
Implementation of BiCG 23
Implementation of CG 16
Implementation of CGS 27
Implementation of Chebyshev iteration 29
Implementation of GMRES 21
Implementation of QMR 25
IMSL 1
Inner products as bottlenecks 16 28—29
Inner products avoiding with Chebyshev 28 29
Irregular convergence See convergence irregular
ITPACK 12
Jacobi method See method Jacobi
Krylov subspace 15
Lanczos and CG 15 83—84
LAPACK 1
Linear convergence See convergence linear
LINPACK 1
MATLAB codes See codes MATLAB
Method, ad hoc SOR 14
Method, adaptive Chebyshev 28 29
Method, asynchronous 13
Method, Bi-CGSTAB 3 7 27—28
Method, Bi-CGSTAB2 28
Method, BiCG 3 7 21—23
Method, CG 3 6 11—17
Method, CG, block version 85
Method, CGNE 3 6 18
Method, CGNR 3 6 18
Method, CGS 3 7 25—27
Method, chaotic 13 See asynchronous
Method, Chebyshev iteration 3 5 7 28—29
Method, choosing in 11—12
Method, comparison with other methods 28—29
Method, domain decomposition 86—91
Method, Gauss — Seidel 3 5 8 9—10
Method, GMRES 3 6 19—21
Method, Jacobi 3 5 8—9
Method, MINRES 3 6 17—18
Method, of simultaneous displacements See method Jacobi
Method, of successive displacements See method Gauss
Method, QMR 3 7 23—25
Method, relaxation 13 14
Method, SOR 3 6 8 10—12
Method, spectral information required by 28
Method, SSOR 3 6 8 12
Method, SYMMLQ 3 6 17—18
Minimization property in Bi-CGSTAB 28
Minimization property in CG 15 17
Minimization property in MINRES 17
MINRES method See method MINRES
Multigrid 91 92
NAG 1
Nonstationary methods 14—29
Normal equations 6
Overrelaxation 11
Parallelism 76 81
Parallelism in BiCG 23
Parallelism in CG 16
Parallelism in Chebyshev iteration 29
Parallelism in GMRES 21
Parallelism in QMR 25
Parallelism, inner products 76—78
Parallelism, matrix-vector products 78 79
Parallelism, vector updates 78
Preconditioners 39 55
Preconditioners, ADI 54 55
Preconditioners, block factorizations 49 52
Preconditioners, block tridiagonal 51
Preconditioners, central differences 46
Preconditioners, cost 39—40
Preconditioners, fast solvers 54
Preconditioners, incomplete factorization 43 52
Preconditioners, left 40
Preconditioners, parallelism in 55
Preconditioners, point incomplete factorizations 44—49
Preconditioners, point incomplete factorizations, fill-in strategies 45
Preconditioners, point incomplete factorizations, modified 46—47
Preconditioners, point incomplete factorizations, parallelism in 48 49
Preconditioners, point incomplete factorizations, vectorization of 47
Preconditioners, point incomplete factorizations, wavefronts in 47—49
Preconditioners, point Jacobi 41 42
Preconditioners, polynomial 52 53
Preconditioners, reduced system 85—86
Preconditioners, right 40
Preconditioners, SSOR 42
Preconditioners, SSOR, parallelism in 42
Preconditioners, symmetric part 53 54
QMR method See method QMR
Quasi-Minimal Residual method See method QMR
Relaxation method See method relaxation
Residuals in BiCG 21
Residuals in CG 14
Residuals in CG, orthogonality of 14
Residuals in SYMMLQ, orthogonality of 17
Restarting in BiCG 23
Restarting in GMRES 19 21
Row projection methods 92 93
Search directions in BiCG 21
Search directions in CG 14 15
Search directions in CG, A-orthogonality of 14
Smooth convergence See convergence smooth
Software obtaining 95—96
SOR method See method SOR
Sparse matrix storage 64—68
Sparse matrix storage, BCRS 65
Sparse matrix storage, CCS 65
Sparse matrix storage, CDS 65—67
Sparse matrix storage, CRS 64—65
Sparse matrix storage, JDS 67—68
Sparse matrix storage, SKS 68
SSOR method See method SSOR
Stalled convergence See convergence stalled
Stationary methods 7—14
Stopping criteria 57 63
Successive overrelaxation method See method SOR
Super linear convergence See convergence super
Symmetric LQ method See method SYMMLQ
Symmetric Successive Overrelaxation method See method SSOR
SYMMLQ method See method SYMMLQ
template 1
Three-term recurrence in CG 15
Two-term recurrence 25
Underrelaxation 11
Wavefronts See preconditioners point wavefront
Реклама