Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Vincenzo Di Gennaro — A bound on the plurigenera of projective varieties
Vincenzo Di Gennaro — A bound on the plurigenera of projective varieties



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A bound on the plurigenera of projective varieties

Автор: Vincenzo Di Gennaro

Аннотация:

We exhibit a sharp Castelnuovo bound for the i-th plurigenus of a smooth variety of given dimension n and degree d in the projective space P r , and classify the varieties attaining the bound, when n2, r2n+1, d>>r and i>>r. When n=2 and r=5, or n=3 and r=7, we give a complete classification, i.e. for any i1. In certain cases, the varieties with maximal plurigenus are not Castelnuovo varieties, i.e. varieties with maximal geometric genus. For example, a Castelnuovo variety complete intersection on a variety of dimension n+1 and minimal degree in P r , with r>(n 2 +3n)/(n–1), has not maximal i-th plurigenus, for i>>r. As a consequence of the bound on the plurigenera, we obtain an upper bound for the self-intersection of the canonical bundle of a smooth projective variety, whose canonical bundle is big and nef.


Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 11

Добавлена в каталог: 22.07.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте