Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Nazarov S.A., Sweers G.H. — A boundary-value problem for the biharmonic equation and the iterated Laplacian in a 3D-domain with an edge
Nazarov S.A., Sweers G.H. — A boundary-value problem for the biharmonic equation and the iterated Laplacian in a 3D-domain with an edge



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A boundary-value problem for the biharmonic equation and the iterated Laplacian in a 3D-domain with an edge

Авторы: Nazarov S.A., Sweers G.H.

Аннотация:

Let Ω be a domain with piecewise smooth boundary. In general, it is impossible to obtain a generalized solution u ∈ W 2 2 (Ω) of the equation $Δ_x^2u = f$ with the boundary conditions $u = Δ_x^u = 0$ by solving iteratively a system of two Poisson equations under homogeneous Dirichlet conditions. Such a system is obtained by setting v = −Δu. In the two-dimensional case, this fact is known as the Sapongyan paradox in the theory of simply supported polygonal plates. In the present paper, the three-dimensional problem is investigated for a domain with a smooth edge Γ. If the variable opening angle α ∈ $C^∞(Γ)$ is less than π everywhere on the edge, then the boundary-value problem for the biharmonic equation is equivalent to the iterated Dirichlet problem, and its solution u inherits the positivity preserving property from these problems. In the case α ∈ (π, 2π), the procedure of solving the two Dirichlet problems must be modified by permitting infinite-dimensional kernel and co-kernel of the operators and determining the solution u ∈ $W_2^2$ (Ω) by inverting a certain integral operator on the contour Γ. If α(s) ∈ (3π/2,2π) for a point s ∈ Γ, then there exists a nonnegative function f ∈ $L_2$(Ω) for which the solution u changes sign inside the domain Ω. In the case of crack (α = 2π everywhere on Γ), one needs to introduce a special scale of weighted function spaces. In this case, the positivity preserving property fails. In some geometrical situations, the problems on well-posedness for the boundary-value problem for the biharmonic equation and the positivity property remain open.


Язык: en

Рубрика: Математика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 25

Добавлена в каталог: 29.06.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте