Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Orders of infinity
Автор: Hardy G.H.
Аннотация:
The ideas of Du Bois-Reyinond's Infinitdrcalcul are of great and growing importance in all branches of the theory of functions. With the particular system of notation that he invented, it is, no doubt, quite possible to dispense; but it can hardly be denied that the notation is exceedingly useful, being clear, concise, and expressive in a very high degree. In any case Du Bois-Reymond was a mathematician of such power and originality that it would be a great pity if so much of his best work were allowed to be forgotten. There is, in Du Bois-Reyinond's original memoirs, a good deal that would not be accepted as conclusive by modern analysts. Pie is also at times exceedingly obscure; his work would beyond doubt have attracted much more attention had it not been for the somewhat repugnant garb in which he was unfortunately wont to clothe his most valuable ideas. I have therefore attempted, in the following pages, to bring the Infinitarcalcul up to date, stating explicitly and proving carefully a number of general theorems the truth of which Du Bois-Reymond seems to have tacitly assumed—I may instance in particular the theorem of III paragraph 2. I have to thank Messrs J. E. Littlewood and G. N. Watson for their kindness in reading the proof-sheets, and Mr J. Jackson for the numerical results contained in Appendix III.