Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Soong T.T. — Fundamentals of probability and statistics for engineers
Soong T.T. — Fundamentals of probability and statistics for engineers



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Fundamentals of probability and statistics for engineers

Автор: Soong T.T.

Аннотация:

An introductory textbook on statistics for students in a variety of scientific fields. Chapters cover descriptive statistics, elements of probability, distribution of sampling statistics, parameter estimation, hypothesis testing, regression, analysis of variance, and quality control. A knowledge of elementary calculus is assumed. The CD-ROM contains programs that can be used to solve most of the problems in the text.


Язык: en

Рубрика: Математика/Вероятность/Статистика и приложения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 391

Добавлена в каталог: 10.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$D_2$ distribution      327
$D_2$ distribution, table      372
Average value      see “Mean”
Axioms of probability      13—14
Bayes's theorem      24—25
Bernoulli trials      161
Beta distribution      221—226 237
Beta distribution, generalized      225—226
Beta distribution, mean      223 237
Beta distribution, variance      223 237
Bias      265
Binomial distribution      43 162 182—183
Binomial distribution, characteristic function      164
Binomial distribution, mean      164 184
Binomial distribution, Poisson approximation      182—183
Binomial distribution, table      365—366
Binomial distribution, variance      164 184
Boole's inequality      30
Brownian motion      106
Cauchy distribution      126
Central limit theorem      199—201
Characteristic function      98
Characteristic function, joint      108
Chebyshev inequality      86—87
Chi-squared distribution      219—221 236
Chi-squared distribution, mean      221 236
Chi-squared distribution, table      371
Chi-squared distribution, variance      221 236
Chi-squared text      316
Coefficient of excess      83
Coefficient of skewness      83
Coefficient of variation      81
Computer software      3 375—377
Confidence interval      295 296 298 302
Confidence limit      347
Consistency      274
Correlation      88—90
Correlation coefficient      88—89
Correlation, perfect      90
Correlation, zero      90
Covariance      88
Covariance, matrix      93
Cramer — Rao inequality      267—270
Cramer — Rao inequality, lower bound (CRLB)      269
Cumulant      101
Cumulative distribution function      see “Probability distribution function”
De Morgan's laws      11—12
Density function      see “Probability density function”
Distribution function      see “Probability distribution function”
Efficiency      270
Efficiency, asymptotic      271
Error      316
Error, type I      316
Error, type II      316
Estimate      264
Estimator      265
Estimator, consistent      274
Estimator, efficient      270 271
Estimator, sufficient      275
Estimator, unbiased minimum-variance      266
Event      12
Excel      2000 3
Expectation      75—76
Expectation, conditional      83—85
Expectation, mathematical      75
Expectation, operator      75
Exponential distribution      45 78 215—219 236
Exponential distribution, mean      215 236
Exponential distribution, variance      215 236
Exponential failure law      218
Extreme-value distribution      226
Extreme-value distribution, type I      228 237
Extreme-value distribution, type II      233 237
Extreme-value distribution, type III      234 237
Failure rate      see Hazard function
Fisher — Neyman factorization criterion      275
Frequency diagram      248
Function of random variables      119 137
Function of random variables, moments      134
Function of random variables, probability distributions      120
Gamma distribution      212—215 236
Gamma distribution, mean      213 236
Gamma distribution, variance      213 236
Gauss — Markov theorem      345
Gaussian distribution      see Normal distribution
Geometric distribution      167 184
Geometric distribution, mean      168 184
Geometric distribution, variance      168 184
Gumbel's extreme value      228
Gumbel's extreme value, distribution      228
Hazard function      218
histogram      248
Histogram, cumulative      327
Hypergeometric distribution      167 184
Hypergeometric distribution, mean      184
Hypergeometric distribution, variance      184
Hypothesis testing      see “Test of hypothesis”
Independence      19—20
Independence, mutual      18
Interarrival time      215
Jacobian      149
Kolmogorov — Smirnov test      327
Law of Large Numbers      96
Least-square estimator      354—355
Least-square estimator, covariance      356
Least-square estimator, linear unbiased minimum variance      344
Least-square estimator, mean      355
Least-square estimator, variance      355
Likelihood equation      288
Likelihood function      288
Linear regression      335
Linear regression, multiple      354
Linear regression, other models      357
Linear regression, simple      335
Linear regression, variance      343
Lognormal distribution      209—212 236
Lognormal distribution, mean      211 236
Lognormal distribution, variance      211 236
Maclaurin series      99
Markov's inequality      115
Markovian property      27
Mass function      see “Probability mass function”
Maximum likelihood estimate      288
Maximum likelihood estimator      288—289
Maximum likelihood estimator, consistency      289
Maximum likelihood estimator, efficiency      289
Maximum likelihood estimator, invariance property      290
Mean      76—77
Mean, conditional      84
Median      76
MODE      78
moment      76 78
Moment estimate      278
Moment estimator (ME)      278—280
Moment estimator (ME), combined      284
Moment estimator (ME), consistency      279
Moment, central      79
Moment, joint      87
Moment, joint central      87
Moment-generating function      112 117
Multinomial distribution      172 184
Multinomial distribution, covariance      173
Multinomial distribution, mean      173 184
Multinomial distribution, variance      173 184
Mutual exclusiveness      13
Negative binomial distribution      169 184
Negative binomial distribution, mean      171 184
Negative binomial distribution, variance      171 184
Normal distribution      107 196—199 236
Normal distribution, bivariate      111
Normal distribution, characteristic function      198
Normal distribution, mean      198 236
Normal distribution, multivariate      205
Normal distribution, standardized      201
Normal distribution, table      369
Normal distribution, variance      198 236
Normal equation      338
Nuisance parameter      284
Parameter estimation      259
Parameter estimation, interval estimation      294—295
Parameter estimation, maximum likelihood method      287
Parameter estimation, moment method      278
Parameter estimation, point estimation      277
Pascal distribution      see “Negative binomial distribution”
Poisson distribution      173—176 184
Poisson distribution, mean      176 184
Poisson distribution, table      367
Poisson distribution, variance      176 184
Population      259
probability      13
Probability density function (pdf)      44—46
Probability density function (pdf), conditional      62—63
Probability density function (pdf), joint (jpdf)      49—51
Probability density function (pdf), marginal      57
Probability distribution function (PDF)      39—41
Probability distribution function (PDF), bivariate      49
Probability distribution function (PDF), conditional      61
Probability distribution function (PDF), joint (JPDF)      49—51
Probability distribution function (PDF), marginal      50
Probability distribution function (PDF), mixed-type      46
Probability mass function (pmf)      41 43
Probability mass function (pmf), conditional      61
Probability mass function (pmf), joint (jpmf)      51—55
Probability mass function (pmf), marginal      52
Probability, assignment      16 17
Probability, conditional      20—21
Probability, function      13
Probability, measure      13
Random experiment      12
Random sample      see “Sample”
Random variable      37—39
Random variable, continuous      38
Random variable, discrete      38
Random variable, function of      120
Random variable, sum of      145
Random vector      39
Random walk      52
Range space      120
Regression coefficient      336
Regression coefficient, confidence interval      347
Regression coefficient, least-square estimate      344
Regression coefficient, test of hypothesis      316
Relative likelihood      16—17
Reliability      60 218
Residual      337
Return period      169
Sample      259
Sample moment      263—264
Sample point      12
Sample space      12
Sample variance      262—263
Sample variance, mean      262
Sample variance, variance      262
Sample, mean      97 261
Sample, size      260
Sample, value      260
Sample, variance      261
Schwarz inequality      92
Set      8—12
Set operation      9—12
Set operation, difference      10
Set operation, intersection (product)      10
Set operation, union (sum)      9
Set, complement of      9
Set, countable (enumerable)      8
Set, disjoint      10
Set, element      8
Set, empty      9
Set, finite      8
Set, infinite      8
Set, subset of      8
Set, uncountable (nonenumerable)      8
Significance level      319
Spreadsheet      3
Standard deviation      79—81
Statistic      260
Statistic, sufficient      275
Statistical independence      see “Independence”
Sterling's formula      107
Student's t-distribution      298—299
Student's t-distribution, table      370
Sum of random variables      93 145—146
Sum of random variables, characteristic function      104—105
Sum of random variables, moment      94
Sum of random variables, probability distribution      106 146
Test of hypothesis      316
Total probability theorem      23
Tree diagram      27—28
Unbiasedness      265
Uniform distribution      57 189 236
Uniform distribution, bivariate      193
Uniform distribution, mean      192 236
Uniform distribution, variance      192 236
Unimodal distribution      79
Unimodal distribution, variance      79 82
Venn diagram      9
Weibull distribution      235
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте