Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ross S.M. — Introduction to probability models
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to probability models
Àâòîð: Ross S.M.
Àííîòàöèÿ: The sixth edition of the successful Introduction to Probability Models introduces elementary probability theory and the stochastic processes and is particularly well-suited to those applying probability theory to the study of phenomena in engineering, management science, the physical and social sciences, and operations research. Skillfully organized, Introduction to Probability Models covers all essential topics. Sheldon Ross, a talented and prolific textbook author, distinguishes this carefully and substantially revised book by his effort to develop in students an intuitive, and therefore lasting, grasp of probability theory. The seventh edition includes many new examples and exercises, with the majority of the new exercises being less demanding of the student. In addition, the text introduces stochastic processes, stressing applications, in an easily understood manner. There is a comprehensive introduction to the applied models of probability that stresses intuition. Both students and professors will agree that this is the most solid and widely used text for probability theory.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /Âåðîÿòíîñòü /Ñòîõàñòè÷åñêèå ïðîöåññû /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: sixth edition
Ãîä èçäàíèÿ: 1997
Êîëè÷åñòâî ñòðàíèö: 669
Äîáàâëåíà â êàòàëîã: 10.06.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
413—414
414
Absorbing state of a Markov chain 160
Accessibility of states 163
Age of a renewal process 371 375—376 405
Alias method 584—587
Aloha protocol 170—171
Alternating renewal process 374—375
Antithetic variables 599 622
Aperiodic state of a Markov chain 173
Arbitrage 532
Arbitrage theorem 533
Arrival theorem 439
Assignment problem 244
Autoregressive process 549
Availability 511—512
Balance equations 323 418
Ballot problem 117—118 152
Bayes formula 14
Bernoulli random variable 26
Bernoulli random variable, simulation of 582
Best prize problem 114—115
Beta random variable 567 577
Beta random variable, simulation of 577—578
Binomial random variables 26—27 81 87 93 94
Binomial random variables, simulation of 582
Binomial random variables, sums of independent 66
Birth and death process 303 306—313 323—324 331
Bivariate exponential distribution 299
Bivariate normal distribution 142—143
Black — Scholes formula 536—539
Bonferroni's inequality 15
Boole's inequality 16
Bose — Einstein distribution 136
Box — Muller method of simulating normal random variables 574
Branching process 197—200 230
Bridge structure 480 490
Brownian bridge 543—544 557
Brownian motion 524
Brownian motion with drift 529
Brownian motion with drift as limit of random walks 554
Brownian motion, continued standard 525
Brownian motion, continued standard as a Gaussian process 543
Brownian motion, integrated 545—546
Brownian motion, maximum variable 528
Busy period 284—285 444—445
Cayley's theorem 493
Central limit theorem 74
Chapman — Kolmogorov equations in continuous time 317
Chapman — Kolmogorov equations in discrete time 160
Chebyshev's inequality 72
Chi-squared random variables 69 574
Chi-squared random variables, moment generating function of 69—70
Chi-squared random variables, simulation of 576—577
Class of a Markov chain 163
Closed class 222
Communication of states 163
Complement of an event 4
Compound Poisson process 281—282 286—287
Conditional expectation 92 95 97 99
Conditional probability 7
Conditional probability, density function 96
Conditional probability, distribution function 92
Conditional probability, mass function 91—92
Conditional variance formula 147 283 312 313
Connected graph 126 205
Control variates 606—608
Convolutions 55
Counting process 249
Coupon collecting problem 261—262
Covariance 49—51 148
Coxian random variables 248—249
Craps 16
Cumulative distribution function 24
Decreasing failure rate (DFR) 498—499
Delayed renewal process 387 400
Dependent events 10
Dirichlet distribution 135
Distribution function see “Cumulative distribution function”
Doubly stochastic 223
Ehrenfest urn model 204 228
Elementary renewal theorem 358 401—402
Equilibrium distribution 406
Ergodic Markov chain 323
Ergodic state 173
Erlang's loss system 456—458
Event 2
Excess of a renewal process 363 372 376
Expectation see “Expected value”
Expected value 36
Expected value of Bernoulli random variables 37
Expected value of Binomial random variables 37 46—47 62
Expected value of continuous random variables 39
Expected value of discrete random variables 36
Expected value of exponential random variables 39 63 236
Expected value of functions of random variables 40—42 45—46
Expected value of geometric random variables 37—38 101—102
Expected value of normal random variables 39—40 64
Expected value of Poisson random variables 38 62
Expected value of sums of a random number of random variables 101
Expected value of sums of random variables 46
Expected value of uniform random variables 39
Expected value, tables of 65
Exponential random variable 34 236 291 508—509
Exponential random variable, simulation of 565 578—580
Failure rate function 239—240 498
Gambler's ruin problem 183—184 185 229
Gamma function 34
Gamma random variables 34 58—59 499
Gamma random variables as interarrival distribution 399 407
Gamma random variables, relation to exponential 59
Gamma random variables, simulation of 576 615
Gaussian process 543
General renewal process see “Delayed renewal process”
Geometric Brownian motion 529—530
Geometric random variable 29 141
Geometric random variable, simulation of 581
Gibbs sampler 214—217 441—442
Graph 126 347
Greedy algorithms 244—245
Hardy — Weinberg law 176—177
Hastings — Metropolis algorithm 212—214
Hazard function 503
Hazard rate function see “Failure rate function”
Hazard rate, method of simulation 569—570
Hazard rate, method of simulation for discrete random variables 616
Hit-miss method 620
Hyperexponential random variables 241—242
Hypergeometric random variables 54 94
Hypoexponential random variables 245—249
Idle period 284 444
Ignatov's theorem 122 138
Importance sampling 608—613
Impulse response function 551
Inclusion-exclusion bounds 487—489
Increasing failure rate (IFR) 498—499 502 519 520 521
Increasing failure rate on average (IFRA) 503 505
Independent events 10 11
Independent increments 250
Independent random variables 48—49 56
Independent trials 11
Indicator random variables 23
Inspection paradox 382—383
Instantaneous ransition rates 316
Interarrival times 255
Intersection of events 3
Inventory model 377—378
Inverse transformation method 564
Irreducible Markov chain 164
Joint cumulative probability distribution function 44
Joint moment generating function 67
Joint probability density function 45
Joint probability mass function 44
Jointly continuous random variables 45
k-of-n structure 477 482—483 502—503 522
Kolmogorov's equations, backward 318
Kolmogorov's equations, forward 320
Laplace's rule of succession 134
Limiting probabilities of a Markov chain 173—174 322—323
Linear filter 551
Linear growth model 307—309 325
Linear programming 187 220 533—534
List problem 124—125 207—209 226
Markov chain, continuous time 304—305
Markov chain, discrete time 157
Markov chain, Monte Carlo methods 211—217
Markov decision process 217—221 232—233
Markov's inequality 71—72
Markovian property 304
Martingale stopping theorem 555 556
Martingales 541 555
Matching problem 9 47 116—117
Matching rounds problem 103—105
Mean of a random variable see “Expected value”
Mean value, analysis 439—440
Mean value, function of a renewal process see “Renewal function”
Memoryless random variable 237 238
Minimal cut set 480 481
Minimal path set 478 479
Mixture of distributions 501
Moment generating function 60—61
Moment generating function of binomial random variables 61—62
Moment generating function of exponential random variables 63
Moment generating function of normal random variables 63—64
Moment generating of Poisson random variables 62
Moment generating of the sum of independent random variables 64
Moment generating, tables of 65
Moments 42—43
Monte Carlo simulation 212 560
Multinomial distribution 81
Multivariate normal distribution 67—69
Mutually exclusive events 3
Negative binomial distribution 82
Nonhomogeneous Poisson process 277—281 298 619
Nonhomogeneous Poisson process mean value function 278
Nonhomogeneous Poisson process, simulation of 589—595
Nonstationary Poisson process see “Nonhomogeneous Poisson process”
Normal process see “Gaussian Process”
Normal random variables 34—37
Normal random variables as approximations to the binomial 74—75
Normal random variables, simulation of 567—569 572—576
Normal random variables, sums of independent 66—67
Null event 3
Null recurrent state 173
Occupation time 337—338 349
Odds 534—535
options 530—532 535—539
Order statistics 57
Order statistics, simulation of 617—618
Ornstein — Uhlenbeck process 548—549
Parallel system 476 482 512
Parallel system upper bound on expected system life 509—511
Patterns 387—398
Patterns mean time until appearance 181—182 360—362 387—398
Patterns of increasing runs of specified size 397—398
Patterns of maximum run of distinct values 395—396
Patterns variance of time until appearance 387—392
Period of a stale of a Markov hain 173
Poisson process 250—252
Poisson process, conditional distribution of the arrival times 265
Poisson process, interarrival times 255
Poisson process, rate 250—251 252
Poisson process, simulation of 588
Poisson random variable sums of independent 56 66
Poisson random variable, approximation to the binomial 3
Poisson random variable, maximum probability 83
Poisson random variable, simulation of 582—583
Poisson random variables 30 93
Polar method of simulating normal random variables 574—576
Pollaczek — Khintchine fomula 444
Polya's urn model 134
Positive recurrent state 173 323
Power spectral density 552
Probability density function 31 32
Probability density function, relation to cumulative distribution function 32
Probability of a union of events 5 6
Probability of an event 4
Probability, mass function 25
Probability, model 1
Pure birth process 303 314
Queues, bulk service 429—432
Queues, function cost equations 412—413
Queues, G/M/k 458—460
Queues, G/M/l 451—455
Queues, G/M/l busy and idle periods 455—456
Queues, infinite server 266—268
Queues, infinite server loss systems 456
Queues, infinite server output process 280—281
Queues, M/C/k 460—461
Queues, M/G/l 442—445 470
Queues, M/G/l busy and idle periods 444—445 470—471
Queues, M/G/l network of queues 432—442
Queues, M/G/l network of queues analysis via the Gibbs sampler 441—442
Queues, M/G/l network of queues closed systems 437—442
Queues, M/G/l network of queues mean value analysis 439—440
Queues, M/G/l network of queues open systems 432—437
Queues, M/G/l output process 331
Queues, M/G/l single server exponential queue (M/M/1) 309—310 326 416—423
Queues, M/G/l single server exponential queue with finite capacity 334 423—426
Queues, M/G/l steady state probabilities 414—416
Queues, M/G/l tandem queues 346 432
Queues, M/G/l with batch arrivals 446—448
Queues, M/G/l with priorities 448—451 471 472
Queues, multiserver exponential queue (M/M/s) 310 325 346 458 462
Queues, multiserver exponential queue departure process 331 468—469
Quick-sort algorithm 107—109
Random graph 126—132 491—495
Random numbers 560
Random permutations 561—562
Random subset 563 619
Random telegraph signal process 547
Random variables 21
Random variables continuous 24 31
Random variables discrete 24 25
Random walk 159 167—168 189—193 202—204 223
Rate of a renewal process 358
Rate of exponential random variable 240
Records 89 298—299
Records, k-Record index 139
Records, k-Record values 137
Recurrent state 164 165 166
Regenerative process 373
Rejection method in simulation 565—566 567
Rejection method in simulation for discrete random variables 616
Reliability function 482 484 485 486 504
Reliability function, bounds for 489 495—497 519
Renewal equation 356
Renewal function 354
Renewal function estimation by simulation 604—606
Renewal function, computation of 384—387
Renewal process 351
Renewal process, central limit theorem for 365
Renewal reward process 366 395
Residual life of a renewal process see “Excess life”
Reverse chain 201 210—211 231 330
Sample mean 51 71
Sample space 1
Sample variance 68—69 71
Satisfiability problem 193—195
Second order stationary process 548 550
Ðåêëàìà