We give a generalization of the result obtained by C. Currais-Bosch. We
consider the
![$A_v$](/math_tex/652882b984d40442c686c5281c3f968a82.gif)
-operator associated to a transverse Killing field v on a
complete foliated Riemannian manifold
![$(M, \mathcal F , g)$](/math_tex/7faebf9cd816eaecee1b213f4ff46e2582.gif)
. Under a certain assumption,
we prove that, for each
![$x \in M, (A_v)_x$](/math_tex/237fba3ae82c6c42989a3db09b17410582.gif)
belongs to the Lie algebra of the linear
holonomy group
![$\Psi_v(x)$](/math_tex/aae70d1ef38d2ff45aa9b464322a394f82.gif)
. A special case of our result, the version of the foliation
by points, implies the results given by B. Kostant (compact case) and
C. Currfis-Bosch (non-compact case).