Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Eisenbud D., Harris J. — The Geometry of Schemes
Eisenbud D., Harris J. — The Geometry of Schemes



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Geometry of Schemes

Авторы: Eisenbud D., Harris J.

Аннотация:

The theory of schemes is the foundation for algebraic geometry proposed and elaborated by Alexander Grothendieck and his co-workers. It has allowed major progress in classical areas of algebraic geometry such as invariant theory and the moduli of curves. It integrates algebraic number theory with algebraic geometry, fulfilling the dreams of earlier generations of number theorists. This integration has led to proofs of some of the major conjectures in number theory (Deligne's proof of the Weil Conjectures, Faltings' proof of the Mordell Conjecture). This book is intended to bridge the chasm between a first course in classical algebraic geometry and a technical treatise on schemes. It focuses on examples, and strives to show "what is going on" behind the definitions. There are many exercises to test and extend the reader's understanding. The prerequisites are modest: a little commutative algebra and an acquaintance with algebraic varieties, roughly at the level of a one-semester course. The book aims to show schemes in relation to other geometric ideas, such as the theory of manifolds. Some familiarity with these ideas is helpful, though not required.


Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 300

Добавлена в каталог: 25.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Singularity, $A_2$      204
Small resolutions      179
Smith, Gregory      5
Smooth point      230
Smoothness      71
Spanier, Edwin H.      261
Spectrum      9
Spectrum of Noetherian ring      26
Spectrum of quotient ring      23
Spectrum of R-algebra      40
Stalk      13
Starr, Jason      5
Strict transform      168
Structure sheaf      9 11 19
Subfunctor      254
Subfunctor, closed      255
Subfunctor, open      254
Subscheme, Cartier      165 167 168 175 176 178 182
Subscheme, closed      23 24 71 211
Subscheme, degree of      125
Subscheme, diagonal      93
Subscheme, locally closed      26
Subscheme, open      23
Subscheme, regular      165 172
Subsheaf      16
Support      21 58 220
Support of a sheaf      220
Swan, Richard G.      18
Sylvester, determinant      224 235
Sylvester, matrix      226
Symmetric algebra      102 105 122 173
Syzygy      79
Syzygy, theorem      128
Tacnode      156 239
Tangent cone      106—110 171 178 190 192 203 204
Tangent cone, projectivized      107
Tangent developable      109
Tangent projective      152
Tangent space to Fano schemes      271
Tangent space to Hilbert schemes      267
Tangent space, affine      104 105
Tangent space, projective      104 105
Tangent space, Zariski      73 78 88 104 107 108 256 260 271
Tautological family      276
Tautological sheaf      119
Terminal object      31
Total transform      168
transform      168
Twist      119
Union of schemes      24
Universal bundle      206
Universal conic      207 208
Universal cubic      203 204
Universal curve      155
Universal family      123 222 263 276
Universal family of pairs of polynomials      226
Universal Fano scheme      203
Universal Fano variety      204
Universal formula      213
Universal hyperplane      124
Universal hypersurface      123
Universal line      240
Universal line section      240
Universal morphism      165
Universal property of blow-up      168
Universal quadric      202
Universally closed      95
Upper-semicontinuous      73
Vakil, Ravi      5
Vanishes on subscheme      25
Variety      see “Scheme classical
Veronese, map      101 109
Veronese, subring      100
Veronese, subsheaf      102
Vistoli, Angelo      277
Vogel, Wolfgang      148
Walker, Robert J.      52
Wedderburn theorems      206
Weil, conjectures      1
Yoneda’s Lemma      251 252 258 263
Zariski, cotangent space      27
Zariski, Oskar      27 28
Zariski, tangent space      27 28 73 78 88 104 105 107 108 256 260 271
Zariski, topology      9—11 48 70 93 130 230 259—261
Zariski, topology, base for      11
Zero-dimensional scheme      27 28 64—66 72
“Little Gidding”      v
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте