Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Oda T. — Convex bodies and algebraic geometry: an introduction to the theory of toric varieties
Oda T. — Convex bodies and algebraic geometry: an introduction to the theory of toric varieties



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Convex bodies and algebraic geometry: an introduction to the theory of toric varieties

Автор: Oda T.

Аннотация:

The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows how elementary convex figures give rise to interesting complex analytic spaces. Easily visualized convex geometry is then used to describe algebraic geometry for these spaces, such as line bundles, projectivity, automorphism groups, birational transformations, differential forms and Mori's theory. Hence this book might serve as an accessible introduction to current algebraic geometry. Conversely, the algebraic geometry of toric varieties gives new insight into continued fractions as well as their higher-dimensional analogues, the isoperimetric problem and other questions on convex bodies. Relevant results on convex geometry are collected together in the appendix.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1988

Количество страниц: 212

Добавлена в каталог: 05.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Tsuchihashi's theorem      168
Tsunoda's theorem      107 108
Unipotent, one-parameter subgroup `      138 140
Unipotent, radical      140 142
UNIT      149 155
Upper convex, function      27 70 76 79 81 156 182 183 185
Upper convex, support function, strictly      82 93 94 184 185
Upper half plane      155
Valency of vertex      53 190
Valuative criterion, the      17 21
Vanishing theorem, Bott's      101 130
Vanishing theorem, for invertible sheaf      77
Vanishing theorem, Grauert — Riemenschneider's      126 157 159
Vanishing theorem, the toric Kodaira      101
Veronese embedding      97
Very ample, divisor      94 106
Very ample, invertible sheaf      82 83
Weighted, circular graph      56
Weighted, dual graph      44 54 152
Weighted, homogeneous hypersurface      98
Weil divisor      see “Divisor” 68
Weyl, chamber decomposition      148
Weyl, group      140 148
White — Frumkin, the terminal lemma of      36
White's theorem      36
Zariski sheaf of differential forms      121 128—130
Zariski's main theorem      141
Zeta function      162 163 165
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте