Авторизация
Поиск по указателям
Lindsey J.K. — Applying generalized linear models
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Applying generalized linear models
Автор: Lindsey J.K.
Аннотация: Applying Generalized Linear Models describes how generalized linear modelling procedures can be used for statistical modelling in many different fields, without becoming lost in problems of statistical inference. Many students, even in relatively advanced statistics courses, do not have an overview whereby they can see that the three areas - linear normal, categorical, and survival models - have much in common. The author shows the unity of many of the commonly used models and provides the reader with a taste of many different areas, such as survival models, time series, and spatial analysis. This book should appeal to applied statisticians and to scientists with a basic grounding in modern statistics. With the many exercises included at the ends of chapters, it will be an excellent text for teaching the fundamental uses of statistical modelling. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, and should be familiar at least with the analysis of the simpler normal linear models, regression and ANOVA. The author is professor in the biostatistics department at Limburgs University, Diepenbeek, in the social science department at the University of Liège, and in medical statistics at DeMontfort University, Leicester. He is the author of nine other books.
Язык:
Рубрика: Математика /Вероятность /Статистика и приложения /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 257
Добавлена в каталог: 05.06.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Fitzmaurice 46
Fleming 117
Fltering 174 175 177
Fltration 123 173
Forecasting 175
Francis 25
Frequentist decision-making 212
Fry 160 161
Ftted value residual 224 225
Full model 14 210
Gamerman 118
Gamma distribution 3 5 11 13 19—21 39 53 55 56 70 71 96—98 100 109 122 161 162 164—166 186 189 191 193 199 210 217 219
Gamma process 132
Gamma process, modulated 133
Gamma process, nonhomogeneous 132
Gamma-Poisson process 186 187 191 194 195
Gauss 4
Gehan 112
Gelman 219
Generalized inverse 16 200
Generalized linear model v—viii 1 3—5 9 18 20 23—25 27 31 34 56 64 70 74 81 87 96 98 102 103 109 111 113 114 121 153 159 161 162 167 197 202 203 205 215 216 223 225 227 229
Generalized linear model, dynamic 173 174 186 189 190 192 195
GENSTAT vi
Geometric distribution 53 128
Geometric process 128
Gilchrist 25
Gilks 85
Glasser 5
GLIM vi 5 25
GLM 5
Goffnet 168
Gomperz growth curve 19 74 76 181
Goodness of fit 164 206 210 211 214 221 223
Greig 156
Growth curve vii 69 178 181—183
Growth curve, exponential 51 70 72 74 76 78 96 181
Growth curve, Gomperz 19 74 76 181
Growth curve, logistic 19 72 75 76 181
Growth curve, logistic, generalized 181—184 194 195
Growth curve, Mitscherlich 181
Growth profile 69 178 180 184
Growth rate 69 71 82
Haberman 46 50 89
Hand 64 103 148
Harkness 154
Harrington 117
Harrison 196
Hart 160 161
Harvey 176 196
Hat matrix 222 223 227
Hay 73 77 79 80
Hazard function 57 111—113 116
Hazard function, baseline 114 116
Hazard function, ntegrated 111 114
Healy 25 85
Heckman 105
Heijden, van der 25
Heitjan 178 181 183 184
Herzberg 94 106
Heterogeneity 42 91 175 177 189 193 216
Heterogeneity factor 38
Hinkley 219
Howes 155
Huet 167
Hurley 132—135
Hypergeometric distribution 186 187
Hypothesis test 24 212
Identity link 4 21 70 95 96 98 100 127 159 161 164 165 175 176 199 211 214
incidence 76—78
Influence 227
Information, expected 201 212
Information, Fisher 26 201
Information, observed 212
Integrated hazard 111 114
Integrated intensity 111
Intensity 8 79 80 88—90 111 112 121 122 124 125 127 133 137 140 189
Intensity, integrated 111
Interest parameter 13 198 204 205
Interval confidence 25 212
Interval estimate 202
Interval likelihood 25 75 76 203 208
Interval observation 123—125 127
Interval prediction 75
Intraclass correlation 180 182
Intrinsic alias 16 26
Inverse gaussian distribution 3 13 19 21 53 96 98 100 109 122 164 189
Inverse polynomial 5 166
Isham 154
Ising model 142—144 146 147
Isolated departure 226
Item analysis 39 40
Iterative weighted least squares 5 9 19 23 98 200
IWLS 5 9 19 23 98 200
Jarrett 66
Jennrich 176
Jones, B. 128 132 136
Jones, R.H. 176 177 196
Jong, de 156 175
Jorgensen 5 25 167
Kalbfleisch, J.D. 117 184
Kalbfleisch, J.G. 137 219
Kalman filter 173—175 177 186
Kaplan 111
Kaplan — Meier estimate 111 112 125
Keene 169
Kempton 155
Kenward 136
Kernel smoothing 149
Kinesiology experiment 84
King 219
Kitagawa 196
Klotz 138
Lachin 139
Lag 91 93—96 98 100 102 226
Laird 46
Lambert 189 191 195
Latent group 32 39
Latent variable 39
laurent 60
Lawless 117 138
Learning process 37 90
Leverage 227 228
Lewis 229
Life history 88
Likelihood function 4 12 26 38 40 52 54 98 111 112 114 123 144 175 176 178 197—199 203 215—217 219
Likelihood function, approximate 198
Likelihood function, conditional 40
Likelihood function, log 203
Likelihood function, normed 202 203 205—208
Likelihood function, penalized 24 209
Likelihood function, profile 30 74 75 97 204 205
Likelihood function, relative 202
Likelihood interval 25 75 76 203 208
Likelihood principle 215
Likelihood ratio 202
Likelihood region 203 207 208
Likelihood residual 225 227
Lindsey v vi 6 19 24 25 31 44 49 57 60 64 66 67 69 80 103 112 123 128 132 136 142 161 189 196 219
Linear model v vii 1 7 9 18 28 44 159 162 167 199 210 211 222—224 229
Linear model, dynamic 173 175—177
Linear predictor 13 14 18 23 70 200
Linear predictor, canonical 71
Linear structure 13 16 18 19 22 74 75 87 222 223 225 226
Link 1 18 96 228
Link, canonical 19 21 42 96 159 164 166 199
Link, complementary log log 4 19 21 42 75 145 199
Link, composite 23
Link, exponent 21 22
Link, identity 4 21 70 95 96 98 100 127 159 161 164 165 175 176 199 211 214
Link, log 5 21 29 70 71 95—98 101 122 125 127 133 145 164 211
Link, logit 5 19 21 28 74 145
Link, probit 4 21 42 199
Link, quadratic inverse 21
Link, reciprocal 5 19 21 95 166
Link, square 182
Link, square root 21
Lisp-Stat vi
Location parameter 10 11 14 19 173 199
Log gamma distribution 20 70
Log likelihood function 203
Log likelihood ratio statistic 211
Log linear model v vii 5 27 29—31 34 36 40 54 77 78 88 90 101 124 127 145
Log link 5 21 29 70 71 95—98 101 122 125 127 133 145 164 211
Log logistic distribution 122
Log normal distribution 3 20 53 55 70 71 94—97 109 122 161 162 164 165 189
Logistic distribution 23
Logistic growth curve 19 72 75 76 181
Logistic growth curve, generalized 181—184 194 195
Logistic regression v vii 19 20 27 28 30 36 90 101 124 128 129 141 145—147 224 225
Logit link 5 19 21 28 74 145
Longitudinal study vii 69 102 103 141 145 173 189
Loyalty model 33
Marginal distribution 93 186 216—218
Marginal homogeneity model 34 35
Marginal mean 93
Marginal probability 34
Maritz 170
Markov chain process 32 34—36 101 102 104 127
Markov process 91 141 146 173
Markov property 91
Markov renewal process 121 127
Maximal model 14 32 38
Maximum likelihood estimate 5 21 51 112 116 124 199 200 205 215 225
McCullagh vii 4 25
McGilchrist 82
McPherson 227
Mean, conditional 93
Mean, marginal 93
Measurement equation 173 174 176 177
Measurement precision 11 50 127 197 199
Meier 111
Mersch 49 57
Michaelis-Menten model 19
Micronuclei counts 60
Minimal model 14 32
Minor diagonals model, asymmetric 36
Minor diagonals model, symmetric 35
Missing values 77 78 80 175
Mitscherlich growth curve 181
Mixture 32 60
Mixture distribution 60 62 64
Mobility study 30 44 149
Model checking 221
Model matrix 14
Model selection vi 14 25 205 206 209
Model, accelerated lifetime 122
Model, analysis of covariance 161
Model, analysis of variance 4 29 161
Model, autoregression 93 94 97 98 102 103 159 173—178
Model, complete 14
Model, embedded 223
Model, factorial 16 162
Model, full 14 210
Model, generalized linear v—viii 1 3—5 9 18 20 23—25 27 31 34 56 64 70 74 81 87 96 98 102 103 109 111 113 114 121 153 159 161 162 167 197 202 203 205 215 216 223 225 227 229
Model, generalized linear, dynamic 173 174 186 189 190 192 195
Model, Ising 142—144 146 147
Model, linear v vii 1 7 9 18 28 44 159 162 167 199 210 211 222—224 229
Model, linear, dynamic 175—177
Model, log linear v vii 5 27 29—31 34 36 40 54 77 78 88 90 101 124 127 145
Model, logistic v vii 19 20 27 28 30 36 90 101 124 128 129 141 145—147 224 225
Model, loyalty 33
Model, marginal homogeneity 34 35
Model, maximal 14 32 38
Model, Michaelis–Menten 19
Model, minimal 14 32
Model, minor diagonals, asymmetric 36
Model, minor diagonals, symmetric 35
Model, mover–stayer 32—34 39 60 91
Model, multiplicative intensities 122 127
Model, nested vi 16 208 214
Model, nonlinear vi viii 19 114 162 164
Model, nonparametric vi 24 32 49 50 77 79 80 90 111 116 147 149 154 212
Model, proportional hazards 113 122 125
Model, proportional odds 23
Model, quasi-independence 32 40 77
Model, quasi-stationary 77—79
Model, quasi-symmetry 34—36 40
Model, random effects 23 38 39 103 127 173 174 177 178 181 195 218
Model, random walk 35 96
Model, Rasch 5 39 40 47 90 91 102 103
Model, Rasch, spatial 146
Model, regression, linear v vii 1 7 9 18 28 44 159 162 165—167 199 210 211 222–224 229
Model, regression, logistic v vii 19 20 27 28 30 36 90 101 124 128 129 141 145—147 224 225
Model, regression, nonlinear 164
Model, regression, Poisson 49 51 53 55 60 63 71 124 125 132 142 144—146
Model, regression, saturated vi 14 23 24 32 33 35 50 56 57 63 77 81 89 91 111 112 149 187 210 211 213 214 221 223
Model, regression, seasonality 89 133 186 187 189
Model, regression, semiparametric vi 23 80 113 116 117 162 164 211
Model, regression, symmetry, complete 34 35
Model, regression, variance components 23 180 182 218
Modulated gamma process 133
Morgan 44
Mover–stayer model 32—34 39 60 91
Multinomial distribution 27 29—31 49 50 54 208
Multiplicative intensities model 122 127
Multivariate distribution 6 63 64 87 141—144 174 177
Multivariate normal distribution 159
Multivariate process 76
Nadeau 138
Negative binomial distribution 3 4 22 39 97 98 164 187 195 217
Negative binomial process 186
Nelder v vii 4 5 25 166 181
Nelson — Aalen estimate 125
Nested model vi 16 208 214
Nonlinear model vi viii 19 114 162 164
Nonlinear structure 19 22 94
Nonparametric model vi 24 32 49 50 77 79 80 90 111 116 147 149 154 212
Nonstationarity 77—81 96
Normal distribution v vii 1—3 5 7 9 11 13 18—20 25 27 28 38 39 44 53 70 71 93 98 101 109 150 159 162 164—167 173 175—177 195 199 205 210 214 218 219 222—225
Normalizing constant 10 52 54 58 63 64 142 143
Normed likelihood function 202 203 205—208
Nuisance parameter 13 40 204
Oakes 117
Observation equation 173 175 176 178
Observation interval 123—125 127
Observation update 175 177
Observed information 212
Offset 18 23 52 53 57 58 63 78 114 152
Oliver 71
Orthogonal polynomial 161
Orthogonality 208 210
Outlier 227
Overdispersion 3 37 38 58 103 104 164 217
Panel study 31 36 91 102
Parameter precision 202 208
Parameter, canonical 13 19 52 53
Parameter, dispersion 13 15 22 223
Parameter, interest 13 198 204 205
Parameter, location 10 11 14 19 173 199
Parameter, nuisance 13 40 204
Pareto distribution 20 53
Parzen 104
Patterson 5
Pearson chi-squared statistic 22 224
Pearson residual 224
Penalized likelihood function 24 209
Penalizing constant 24 209
Period effect 128
Piecewise exponential distribution 116 125
Pierce 229
Реклама