Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Johnson N., Kotz S., Kemp A.W. — Univariate discrete distributions
Johnson N., Kotz S., Kemp A.W. — Univariate discrete distributions



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Univariate discrete distributions

Àâòîðû: Johnson N., Kotz S., Kemp A.W.

Àííîòàöèÿ:

Addresses the latest advances in discrete distributions theory including the development of new distributions, new families of distributions and a better understanding of their interrelationships. Greater emphasis on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions, is covered. All chapters have been revised to make them user-friendly and more up-to-date. Extensive information on new mixtures, including generalized hypergeometric families, and the increased use of the computer have been added. The bibliography is updated and expanded along with relevant chapter and section numbers.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 1992

Êîëè÷åñòâî ñòðàíèö: 568

Äîáàâëåíà â êàòàëîã: 04.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Discrete distributions, Ising — Stevens      88 423—424
Discrete distributions, Katti Type $H_1$      330—331
Discrete distributions, Katti Type $H_2$      92 206 282 339
Discrete distributions, Kempton's log-series generalization      02
Discrete distributions, Laplace — Haag matching distribution      2 410—411
Discrete distributions, leads in coin tossing      274—275
Discrete distributions, Lexian      141
Discrete distributions, log-zero-Poisson      317—318 334
Discrete distributions, lost-games      96 281 445—447
Discrete distributions, Lueders Formel I      231
Discrete distributions, Lueders Formel II      231—232
Discrete distributions, Markov — Polya      240 283
Discrete distributions, Marlow's factorial      88 104 279
Discrete distributions, Morlat's generalized Poisson      195—191 324
Discrete distributions, Morse      454
Discrete distributions, Naor      447—448
Discrete distributions, negative binomial mixtures      242—243 329 330
Discrete distributions, negative hypergeometric      83 88 92 239—242 245 252 254—255 270—271
Discrete distributions, Neyman Types B and C      88 387
Discrete distributions, noncentral negative binomial      148 232—233
Discrete distributions, Pascal      see Negative binomial distribution
Discrete distributions, Pascal — Poisson      233—234 388—389 402
Discrete distributions, Poisson and binomial mixture      321—322
Discrete distributions, Poisson beta      92 330—331 338 386
Discrete distributions, Poisson binomial      232
Discrete distributions, Poisson Lexis      142
Discrete distributions, Poisson lognormal      301 332
Discrete distributions, Poisson mixture of binomials      336
Discrete distributions, Poisson mixture of negative binomials      329—330
Discrete distributions, Poisson mixture of Poissons      see Neyman Type A
Discrete distributions, Poisson negative binomial      231—232
Discrete distributions, Poisson rectangular      88 330
Discrete distributions, Poisson truncated gamma      331
Discrete distributions, Poisson truncated normal      332 361—362
Discrete distributions, Poisson — Lindley      148 332—333
Discrete distributions, Poisson's exponential limit distribution      449
Discrete distributions, Poisson-inverse Gaussian      455—457
Discrete distributions, Poisson-stopped sums      188—189 351—356
Discrete distributions, Poissonian trials      138—140
Discrete distributions, poly-nacci      427
Discrete distributions, Polya      88 92 200 205 244—249
Discrete distributions, Polya — Eggenberger      88 200 205
Discrete distributions, pseudo-Euler      198
Discrete distributions, quasi-binomial      102
Discrete distributions, quasi-hypergeometric      101
Discrete distributions, quasi-Polya      101
Discrete distributions, random-walk      98 445
Discrete distributions, record value distributions      453—455
Discrete distributions, rectangular      272—274 342 430 432
Discrete distributions, Riemann zeta      466—469
Discrete distributions, riff-shuffle      234—235
Discrete distributions, Sichel distributions      455—457
Discrete distributions, Skellam's gene frequency      457—459
Discrete distributions, Stevens — Craig      92 104 418
Discrete distributions, Stirling of the first kind      88 300
Discrete distributions, Stirling of the second kind      88 190—191
Discrete distributions, sub-Poisson      193 206
Discrete distributions, Subrahmaniams' generalized Neyman      388—389
Discrete distributions, super-Poisson      193
Discrete distributions, Tanner — Borel      96 98 189 277 394—396 453 469
Discrete distributions, Thomas      88
Discrete distributions, trigamma      436—437
Discrete distributions, univariate factorial multinomial      462—463
Discrete distributions, univariate multinomial      460—462
Discrete distributions, univariate negative factorial multinomial      462—463
Discrete distributions, univariate negative multinomial      461—463 .
Discrete distributions, Waring      88 104 278—279
Discrete distributions, weighted binomial      145—147
Discrete distributions, weighted negative binomial      230—231
Discrete distributions, Yule      88 104 275—278 469
Discrete distributions, zeta      466—469
Discrete distributions, Zipf      466—469
Discrete linear exponential distribution      70 311
Discrete random variable      36
Dispersion: overdispersion      89 94 157 198 326
Dispersion: underdispersion      89 94 157 198
Displacement operators (backward, central, forward)      8—9
Distinguishable particles      420
Distribution function      see Cumulative distribution function (cdf)
Distributional types: "par grappes"      188 356
Distributional types: ascertained      90 94 146
Distributional types: compound      188 344
Distributional types: conditional      37 112 161 279—280
Distributional types: deflated      186—187 312—318
Distributional types: discrete linear exponential      70 311
Distributional types: envelope      64
Distributional types: group size      287 447
Distributional types: inflated      186—187 312—318
Distributional types: interrupted      443—445
Distributional types: lattice      69
Distributional types: matching      409—414
Distributional types: mixing      53—54 305—342
Distributional types: mixture      53—54 305—342
Distributional types: modified      186—187 300 312—318
Distributional types: order k      see Distributions of order k
Distributional types: parent distribution      448
Distributional types: partial sums      448—451
Distributional types: positive      135—136 168 181 282
Distributional types: proper distribution      35
Distributional types: renewal      451
Distributional types: size-biased      146
Distributional types: STER      92 244 248 449—450
Distributional types: stopped sums      188—189 233 343—403
Distributional types: target      62 64
Distributional types: truncated      52—53 135—137 181—186 225—227 299—300
Distributional types: waiting time      200 240 241
Distributional types: weighted      90 94 145—147 230—231
Distributions of order k: beta-binomial      284
Distributions of order k: beta-negative binomial      284
Distributions of order k: binomial I      431
Distributions of order k: binomial II      432
Distributions of order k: binomial III      432
Distributions of order k: compound Poisson      430
Distributions of order k: extended      189 432
Distributions of order k: further      432
Distributions of order k: generalized Waring      284 432
Distributions of order k: geometric      427—428
Distributions of order k: hypergeometric      284 432
Distributions of order k: inverse hypergeometric      432
Distributions of order k: inverse Polya      284 432
Distributions of order k: logarithmic I      303 429
Distributions of order k: logarithmic II      303 432
Distributions of order k: negative binomial I      303 428
Distributions of order k: negative binomial II      303 430
Distributions of order k: negative binomial III      303 432
Distributions of order k: negative hypergeometric      284
Distributions of order k: Poisson      189 429—430
Distributions of order k: Polya      284 432
Distributions of order k: waiting time      284
Diversity      298
Ehrenfest model of heat exchange      464
Elementary functions: Estimable parameters of finite mixtures      310—311
Elementary functions: generalized hypergeometric representations      24
Elementary functions: hypergeometric representations      18—19
Estimation: even-points method      361
Estimation: first-moment equation      60 73 76
Estimation: generalized/modified/partial/penalized maximum-likelihood methods      60
Estimation: maximum likelihood      59 60 73 76 311 350
Estimation: mean and zero-frequency method      217
Estimation: method of moments      59—60 311
Estimation: minimum chi-square method      217 391
Estimation: minimum variance unbiased      58 73—74 76
Estimation: pseudo-likelihood methods      60
Estimator      see also Estimation
Estimator, asymptotically efficient      58
Estimator, asymptotically unbiased      57
Estimator, biased      57
Estimator, consistent      58
Estimator, efficient      58
Estimator, relative efficiency      57
Estimator, sufficient      58
Estimator, unbiased      57
Euler transformations      18
Euler's constant      5 8
Euler's integral      18
Everett's central difference formula      10
Exceedances      240—241 274
Exchangeable events      406
Exhaustive events      34
Expansions: Barnes      6
Expansions: binomial      3.4
Expansions: Camp — Paulson      117 210 212
Expansions: Edgeworth      162
Expansions: Faa di Bruno      346 430
Expansions: Gram — Charlier      117 210—211 442—443
Expansions: Lagrange      13 96 97 396
Expansions: multinomial      4
Expansions: Stirling      6
Expansions: Waring      243 278
Expected value      39—40
Faa di Bruno's formula      346 430
Factorial cumulants      45—46 71—72 89 94 326—327 348 354 355
Factorial moments      43—44 50 71 75 89 91—93 326 348 353 354 408
Failure rate      36 111 160 209 290
Families      69—104
Families, Abel      101—102
Families, Bissinger (STER) distributions      92 244 248 449—450
Families, Crow and Bardwell      80
Families, difference equation      77
Families, discrete linear-exponential      70
Families, discrete Pearson      77
Families, extended Crow and Bardwell      80 87
Families, extended Katz      79—80 87
Families, factorial series distributions      102—104
Families, general Dirichlet series      74
Families, generalized factorial series distributions      104
Families, generalized power series distributions (GPSD)      70—74
Families, Gould      100—101
Families, Katz      77—80 87
Families, Kemp's hypergeometric factorial distributions      85 91—95 338—339
Families, Kemp's hypergeometric probability distributions      80 84—91 339—340
Families, Kemp's hypergeometric recast distributions      85 94—95
Families, Khatri and Patel Type A, B. and Ñ      400—402
Families, Lagrangian expansion      75 96—100
Families, modified power series distributions (MPSD)      74—77
Families, multiparameter power series distributions      75
Families, Ord      81—84
Families, Patil's two-parameter power series distributions      74
Families, Poisson power series distributions      356
Families, Poisson$\vee$Katz family      382 391
Families, Pollaczek — Geiringer      356
Families, power series distributions (PSD)      70—77
Families, q-series      140 304 434—435
Families, Steyn's two-parameter PSD      75 459—460
Families, Sundt and Jewel      80—81
Fermi — Dirac statistics      405 420—422
Fiducial limits      61
Finite difference calculus      8—11
Finite mixtures of discrete distributions      53 306
Finite mixtures of discrete distributions, applications      309—312
Finite mixtures of discrete distributions, binomials      319—321
Finite mixtures of discrete distributions, other distributions      321—322
Finite mixtures of discrete distributions, Poissons      318—319
Force of mortality      36
Fourier transform      27
Frechet inequalities      408—409
Functions (mathematical): basic hypergeometric function      31—32
Functions (mathematical): Bessel of the first kind      16
Functions (mathematical): beta      7
Functions (mathematical): confluent hypergeometric function      19—22
Functions (mathematical): digamma      7
Functions (mathematical): error functions      16 21
Functions (mathematical): gamma      4—6
Functions (mathematical): Gaussian hypergeometric      17—19
Functions (mathematical): generalized hypergeometric      22—24
Functions (mathematical): hypergeometric      17—19
Functions (mathematical): incomplete beta      15
Functions (mathematical): incomplete gamma      14
Functions (mathematical): Kummer      19—22
Functions (mathematical): modified Bessel of the first kind      16—17
Functions (mathematical): modified Bessel of the third (second) kind      30 455
Functions (mathematical): normal distribution      16
Functions (mathematical): psi      7
Functions (mathematical): q-hypergeometric series      31—32
Functions (mathematical): Riemann zeta      29—30
Functions (mathematical): trigamma      7
Gauss's multiplication theorem      6
Gauss's summation theorem      17
Generalized distributions as mixtures      323—325 345 354
Generalized hypergeometric distributions      244—256
Generalized hypergeometric distributions, limiting forms      255—256
Generalized hypergeometric distributions, models      245 247—249
Generalized hypergeometric distributions, moments      249—253
Generalized hypergeometric distributions, tail properties      254—255
Generalized variance      58
Generating functions: central (corrected) moment      41 50 71 89 93—94
Generating functions: cumulant      44—45 50 71—72 326—327
Generating functions: exponential      419
Generating functions: factorial cumulant      45 71—72.
Generating functions: factorial moment      44 50 71 89 91 93 326 408
Generating functions: moment (uncorrected)      40 50 71 89 93—94
Generating functions: probability      50 89 93 408
Geometric distribution      88 98 147 200 201—203 220—223 240 279 287 316 322 378 441
Geometric distribution, applications      203
Geometric distribution, characterizations      201 202 220—223
Geometric distribution, computer generation      66 67
Geometric distribution, exponential relationship      201
Geometric distribution, genesis      201—202
Geometric distribution, infinite divisibility      202
Geometric distribution, Markovian property      201
Geometric distribution, moment and other properties      201 202
Geometric distribution, order statistics      202
Geometrical concepts      55—56
Goodness-of-fit      57
Goodness-of-fit, Gram — Charlier approximation      117 210—211 442—443
Goodness-of-fit, Pearson's chi-square test      132—133 173 366 388
Gurland's theorem      324—325
Half-mode      42
Hazard rate (increasing/decreasing)      36
Heine's theorem      32
Hermite distribution      88 357—364 366 391 441
Hermite distribution, estimation      360—361
Hermite distribution, genesis      332 357 359—361
Hermite distribution, moment and other properties      357 358—360
Heterogeneity      344
Homoscedasticity      47
Hypergeometric distributions      83 88 92 104 120 134 138 237—284 334—335 341—342 421 423—424
Hypergeometric distributions, applications      269—272
Hypergeometric distributions, approximations, bounds, and tables      256—262
Hypergeometric distributions, characterizations      266—269
Hypergeometric distributions, classical      83 84 237—238 238—239 245 254 262—264 269—270
Hypergeometric distributions, comparison with other distributions      135 255—256
Hypergeometric distributions, computation of probabilities      262
Hypergeometric distributions, computer generation      67—68
Hypergeometric distributions, estimation      262—266
Hypergeometric distributions, extended hypergeometric      279—282
Hypergeometric distributions, geneses and history      112 237—244
Hypergeometric distributions, hypergeometric mixture of binomials      337
Hypergeometric distributions, inverse (negative) hypergeometric      83 88 239—242 245 254 264—266 270—271
Hypergeometric distributions, limiting      138 179 228
Hypergeometric distributions, mixed hypergeometric distributions      322 342
Hypergeometric distributions, moment properties      249—253
Hypergeometric distributions, noncentral hypergeometric      282—283
Hypergeometric distributions, other properties      253—256
Hypergeometric distributions, positive hypergeometric      282
Hypergeometric distributions, tail properties      253—255
Hypergeometric distributions, Types I, II, III. and IV      246—256
Hypergeometric distributions, waiting-time distribution      240 241
Hypothesis testing      57
Identifiability of mixtures      310—311 323
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå