Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kendall M.G. — The advanced theory of statistics (vol. 1)
Kendall M.G. — The advanced theory of statistics (vol. 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The advanced theory of statistics (vol. 1)

Автор: Kendall M.G.

Язык: en

Рубрика: Математика/Вероятность/Статистика и приложения/

Статус предметного указателя: Указатель в процессе заполнения

ed2k: ed2k stats

Издание: second edition

Год издания: 1945

Количество страниц: 457

Добавлена в каталог: 04.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Merzrath, E., refs., bivariate frequency-distributions and correlation      85
Mesokurtosis      82
Mesokurtosis in normal distribution      129
Milk, costs of production of, (Table 1.9)      9
Milk-yield, distribution of cows according to, (Table 1.25)      27
Milk-yield, distribution of cows according to, covariance and variances, (Exercise 14.1)      364
Milne — Thompson, L.M., Calculus of Finite Differences, footnote      69
Miner, J.R., tables of correlation coefficients      375
Miner, J.R., tables of correlation coefficients and refs.      386
MODE      35
Mode, relation with median and moan      35 46
Mode, standard error in Poarson distributions      225
Moments, preliminary      39
Moments, preliminary as characteristics of a distribution      83—84
Moments, preliminary in terms of factorial moments      57—58
Moments, preliminary of binomial      117 118
Moments, preliminary of hypergeometric      127
Moments, preliminary of normal distribution      129
Moments, preliminary, about one point in terms of those about another      49
Moments, preliminary, absolute moments      see "Absolute"
Moments, preliminary, calculation of      50—54
Moments, preliminary, corrections for grouping      68—78
Moments, preliminary, corrections to multivariate      80—81
Moments, preliminary, definition      49
Moments, preliminary, distribution of      245 see "Second "Cumulants"
Moments, preliminary, factorial moments      see "Factorial"
Moments, preliminary, generating functions for      54—56 90
Moments, preliminary, multivariate      79—80
Moments, preliminary, problem of moments      105—110
Moments, preliminary, relationship with cumulants      61—64
Moments, preliminary, Sheppard's corrections to      41
Moments, preliminary, standard errors of      204—211 225
Montel, P., theorem on convergent sequences of functions      100
Moore, G., data from, (Table 1.20)      24
Morant, G., refs., random occurrences in space and time      134
Morant, G., refs., random occurrences in space and time, data from (Table 14:1)      325
mth values, distribution of      217—222
Multiple correlation      see "Correlation"
Multivariate, characteristic functions      104—105
Multivariate, correlation      see "Correlation"
Multivariate, distributions      19—22
Multivariate, k-statistics      281—283
Multivariate, moments and cumulants      79—81
Multivariate, normal distribution      376—377
Multivariate, sampling distributions      250
Nair, U.S., distribution of mean difference      216 225
Nair, U.S., distribution of mean difference and refs.      228
Neyman, J., on theory of estimation, footnote      180
Neyman, J., on theory of estimation, footnote, refs., estimation      184
Neyman, J., on theory of estimation, footnote, representative method      202
Neyman, J., on theory of estimation, footnote, sampling from finite population      284 285
Nicholson, C., refs., distribution of a ratio      251
Normal distribution, (Example 10.10)      243
Normal distribution, (Example 10.3)      236—237
Normal distribution, as limit of binomial, (Example 4.6)      103
Normal distribution, as limit of Poisson distribution, (Example 4.8)      113
Normal distribution, as one of Pearson's types      141
Normal distribution, bivariate form      see "Bivariate"
Normal distribution, characteristic function of, (Example 4.1)      94
Normal distribution, cumulants of, (Example 3.10)      67
Normal distribution, determined uniquely by its moments, (Example 4.7)      109—110
Normal distribution, distribution function of      129—130
Normal distribution, distribution of mean in samples from, (Example 10.2)      234—236
Normal distribution, distribution of measures of departure from, (Exercise 11.16)      288
Normal distribution, distribution of variance in samples from, (Example 10.5)      238—239
Normal distribution, generally      128—132
Normal distribution, in Central Limit Theorem      180—183
Normal distribution, in sampling of attributes      198—199
Normal distribution, moments of, (Example 3.4)      53—54
Normal distribution, multivariate form      376—377
Normal distribution, providing standard of kurtosis      82
Normal distribution, sampling of k-statistics from      274
Normalisation of frequency-functions      156—159
Norris, N., refs., inequalities among averages      47
Norton, J.P., data from Statistical Studies in the New York Money Market, (Table 1.26)      28
Ogburn, W.F., correlation of crime and religion and refs.      386
Ogburn, W.F., correlation of crime and religion, (Example 15.2)      375
Ogive of Galton      see "Distribution curve"
Oldis, E., refs., significance of correlation coefficient, (under E.S. Pearson)      363
Pabst, M.R., distribution of Spearman's $\rho$      401
Pabst, M.R., distribution of Spearman's $\rho$ and refs., (under Hotelling)      436
Paciello, U., refs., calculation of mean difference      47
Paired comparisons      421—436
Pairman, E., refs., corrections to abrupt distributions      85
Parameters, definition      29
Parameters, definition of dispersion      38—48
Parameters, definition of location      29—38
Partial: association      313—318
Partial: association, contingency      321—322
Partial: association, correlation      see "Correlation"
Partial: association, regression      see "Regression"
Pattern functions, in sampling k-statistics      262—265 277—278 279
Pattern functions, in sampling k-statistics, (Exercise 11.11)      287
Pea breeding, (Example 12.2)      299
Pearce, T.V., data from, (Table 1.23)      26
Pearse, G.E., data from, (Table 1.11)      10
Pearse, G.E., data from, (Table 1.11), refs., corrections when ordinates are infinite      86
Pearson distributions, as limit of hypergeometric      132—133
Pearson distributions, as limit of hypergeometric, distribution of means from (ref. Irwin)      250
Pearson distributions, as limit of hypergeometric, fitting of      143—145
Pearson distributions, as limit of hypergeometric, generalisation by Romanovsky, refs.      160 161
Pearson distributions, as limit of hypergeometric, generally      137—145
Pearson distributions, as limit of hypergeometric, inflections of      138
Pearson distributions, as limit of hypergeometric, quadrature of      145
Pearson distributions, as limit of hypergeometric, recurrence relation for moments      138
Pearson distributions, as limit of hypergeometric, skewness of      138
Pearson, Coefficient of variation      43
Pearson, Coefficient of variation and of biserial $\eta$      358
Pearson, Coefficient of variation, coefficient of contingency      319—320
Pearson, Coefficient of variation, grades and Spearman's $\rho$      410
Pearson, Coefficient of variation, measure of skewness      81
Pearson, Coefficient of variation, sampling of contingency coefficients      321
Pearson, Coefficient of variation, sampling of tetrachoric r      356
Pearson, E.S., distribution of range      223 224
Pearson, E.S., distribution of range, correlation coefficient      363
Pearson, E.S., distribution of range, distribution of $\surd{b}$      280—281
Pearson, E.S., distribution of range, distribution of $\surd{b}$, (Exercise 11.17)      289
Pearson, E.S., distribution of range, distribution of frequency constants in skew population      228
Pearson, E.S., distribution of range, estimating standard deviation      228
Pearson, E.S., distribution of range, polychoric coefficients, (under K. Pearson)      363
Pearson, E.S., distribution of range, refs., range      228
Pearson, E.S., distribution of range, sampling of correlation coefficient      346
Pearson, E.S., distribution of range, tests for normality      285
Pearson, Karl, data from, fecundity of mares, (Table 1.20)      24
Pearson, Karl, data from, height of fathers and sons, (Table 14.3)      327
Pearson, Karl, data from, quoting data by Elderton on alcoholism, (Exercise 14.12)      366
Pearson, Karl, data from, quoting data by Goring on crime, (Table 14.6)      356
Pearson, Karl, data from, trypanosomes, (Table 1.13)      12
Pearson, Karl, data from, whist deals, (Table 5.4)      128
Pearson, M.V., refs., mean character of ranked individuals      229
Pearson, Refs., corrections to abrupt distributions (under Pairman)      85
Pearson, Refs., corrections to abrupt distributions (under Pairman) of difference of Type III variates, (Exercise 10.6)      252
Pearson, Refs., corrections to abrupt distributions (under Pairman), 15-constant frequency surface      160
Pearson, Refs., corrections to abrupt distributions (under Pairman), distribution of $\chi^{2}$      251 305
Pearson, Refs., corrections to abrupt distributions (under Pairman), mean character of ranked individual      229
Pearson, Refs., corrections to abrupt distributions (under Pairman), moments of hypergeometric      134
Pearson, Refs., corrections to abrupt distributions (under Pairman), multiple contingency      322
Pearson, Refs., corrections to abrupt distributions (under Pairman), probable error of biserial $\eta$      363
Pearson, Refs., corrections to abrupt distributions (under Pairman), rank correlation      436
Pearson, Refs., corrections to abrupt distributions (under Pairman), sampling of contingency coefficients      322
Pearson, Refs., corrections to abrupt distributions (under Pairman), sampling of correlation coefficient, (under Co-operative Study)      363
Pearson, Refs., corrections to abrupt distributions (under Pairman), skew variation      134
Pearson, Refs., corrections to abrupt distributions (under Pairman), standard errors of frequency constants      228—229
Pitman, E.J.G., refs., significance test applicable to samples from any population      436
Platykurtosis      82
Poincare, characteristic functions      113
Poisson distribution, generally      120—122
Poisson distribution, generally in mixed populations      122—124
Poisson distribution, generally, bivariate form, (Exercise 5.8)      130
Poisson distribution, generally, cumulants of, (Example 6.9)      66
Poisson distribution, generally, distribution function of      122
Poisson distribution, generally, distribution of means from, (Example 10.9)      243
Poisson distribution, generally, moments of, (Exercise 3.3)      86
Poisson distribution, generally, normal distribution as limiting form of, (Example 4.8)      113
Poisson distribution, generally, sampling of attributes from, (Exercise 8.2)      203
Polynomials      see "Tchebycheff — Hermite polynomials"
Populations, as basis of statistical theory      1
Populations, as basis of statistical theory, existent      18—19
Populations, as basis of statistical theory, hypothetical      19
Populations, as basis of statistical theory, types in sampling      186—187
Posterior probability      176
Potatoes and wheat, correlation of yields, (Example 14.3)      332—334
Potatoes and wheat, correlation of yields, (Table 14.4)      333
Potatoes, bias in estimates of yield, (Example 8.4)      189—190
Pretorius, S.J., data from, on Australian marriages and (Table 6.1)      150
Pretorius, S.J., data from, on Australian marriages on beans, (Table 1.13)      20
Pretorius, S.J., data from, on Australian marriages, (Table 1.8)      9
Pretorius, S.J., data from, on Australian marriages, refs., skew bivariate distributions      160
Principle of maximum likelihood      178 see
Principle of moments      83
Principle of moments in fitting Poarson's distributions      143
Prior probability      170
Probability, functions      14
Probability, generally      164—185
Probability, generally and statistical distributions      172—173
Probability, generally in a continuum      170—171
Probability, generally, basic rules of direct probability      166—170
Probability, generally, Bayes' theorem      175—178
Probability, generally, inverse probability      176
Probability, generally, logic of      165
Probability, generally, posterior and prior      176
Probability, generally, von Mises' approach      171—172
Problem of moments      105—110
Problem of moments, refs.      113—114
Product-moment correlation      see "Correlation"
Quadrature of Pearson distributions      145
Quantiles, definition      36
Quantiles, graphical determination of      37—38
Quantiles, standard errors of      211—213
Quartiles, interquartile range as measure of dispersion      38
Quartiles, standard errors of      225
Radioactive element (polonium), distribution of particles from, (Example 6.4)      156
Radioactive element (polonium), distribution of particles from, (Table 6.2)      156
Ramsey, F.P., logic of probability      165
Ramsey, F.P., logic of probability, refs., The Foundations of Mathematics      184
Random variables, definition      173
Random variables, definition, addition of      173
Random, Sampling Numbers      192—197
Randomising machine, (Example 8.3)      189
Randomness      171
Randomness, random sampling, generally      186—203
Randomness, technique of      191—197
Range, definition      38
Range, distribution of      223—224
Rank correlation      see "Correlation"
Ranking, estimation of      421
Rankings, problem of m      see "m rankings"
Ratio, distribution of      248—249
Ratio, distribution of, Cramer's theorem (Exercise 10.8)      252
Ratio, distribution of, Geary's theorem (Exercise 10.9)      253
Ratio, distribution of, refs.      250—251
Rectangular population and (Example 10.12)      244
Rectangular population as one of Pearson's distributions      142
Rectangular population, distribution of geometric mean in samples from, (Example 10.13)      245—246
Rectangular population, distribution of mean of samples from, (Example 10.7)      240
Rectangular population, transformation of frequency-distribution to      18
Recurrence relations for moments of binomial      118
Registrar-General's Statistical Review of England and Wales, data from, (Table 1.1)      3
Registrar-General's Statistical Review of England and Wales, data from, (Table 1.11)      11
Registrar-General's Statistical Review of England and Wales, data from, (Table 1.3)      5
Registration districts, distribution according to births, (Table 14.2)      326
Regression, coefficients of      329
Regression, criterion for linearity of      335—336
Regression, definition      327—329
Regression, partials      368—379
Regression, sampling of coefficients of      336—337 347—349
Regression, sampling of partials      378—379
Regression, significance of      358—359
Regression, standard error of coefficients      337
Religion, correlation with crime, (Example 15.2)      375—376
Reserves and bank deposits, distribution of, (Table 1.26)      28
Residuals, in regression equations      369
Ritchie-Scott, A., refs., correlation coefficient of polychoric table      363
Romanovsky, V., refs., method of moments      86
Romanovsky, V., refs., method of moments and (Exercise 5.2)      135
Romanovsky, V., refs., method of moments, generalisation of Pearson distributions      160
Romanovsky, V., refs., method of moments, moments of hypergeometric      134
Room-space, distribution of families deficient in, (Table 1.24)      27
Rothamsted Experimental Station, data from, (Table 8.1)      187
Rutherford, Lord, data on emission of radioactive particles, (Example 6.4)      156
Saltus, in distribution function      14
Sampling distributions      173—175
Sampling distributions by characteristics functions      242—246
Sampling distributions by geometrical methods      236—242
Sampling distributions by induction      246—248
Sampling distributions of a ratio      248—249
Sampling distributions of a sum      246—247
Sampling distributions, approximations to      254—289
Sampling distributions, derivation by analytical methods      231—236
Sampling distributions, exact      231—253
Sampling distributions, multivariate      250
Sampling distributions, role in sampling problems      201
Sampling moments, generally      254—289 see "k-statistics"
Sampling preliminary      174
Sampling preliminary from attributes      197—202
Sampling preliminary from continuous population      197
Sampling preliminary with and without replacement      186—187
Sampling preliminary, lottery or ticket      192
Sampling preliminary, random sampling      see "Random"
Sampling preliminary, randomness in      187—197
Sampling preliminary, sampling problem      186
Sampling preliminary, simple      174
Scale reading, bias in, (Example 8.2)      188
Scarlet fever, deaths from, (Table 1.3)      5
Schoolchildren, distribution according to intelligence and clothing, (Example 13.6)      320
Second Limit Theorem      110—113
Semi-interquartile range, as measure of skewness      38
Semi-interquartile range, as measure of skewness, standard error of      215
Seminvariant statistics      84—85 256
Seminvariant statistics, refs. (Dressel and Kendall)      285
Seminvariants      61 84—85
Seminvariants, refs.      84—85 see
Sentences, distribution of according to length, (Table 1.21)      25
Sheppard's corrections      68—74
Sheppard's corrections as average corrections      74—75
Sheppard's corrections for discrete data      77
Sheppard's corrections, (Exercise 3.13)      88
Sheppard's corrections, compared with sampling fluctuations      210
Sheppard's corrections, multivariate case      80—81
Sheppard's corrections, to cumulants      78
Sheppard's corrections, to factorial moments      77—78
Sheppard, W.F., tables of normal distribution      130
Sheppard, W.F., tables of normal distribution and refs.      134
Sheppard, W.F., tables of normal distribution, correlation coefficient, (Exercise14.4)      364
Shirley poppies, distribution of, (Table 1.5)      7
Shohat, J., refs., Stieltjes integrals      22
Shohat, J., refs., Stieltjes integrals, inequalities for moments      86
Shohat, J., refs., Stieltjes integrals, Second Limit Theorem      112 113 114
Shuffling of cards      see "Card-shuffling"
Simple sampling      174
Sir Elderton, William P., Hardy's method of calculating factorial moments      59
Sir Elderton, William P., Hardy's method of calculating factorial moments and (Exercise 3.10)      87—88
Sir Elderton, William P., Hardy's method of calculating factorial moments on Gram — Charlier series      153
Sir Elderton, William P., Hardy's method of calculating factorial moments, corrections for moments when the distribution is symmetrical      85
Sir Elderton, William P., Hardy's method of calculating factorial moments, fitting of Pearson distributions      143
Sir Elderton, William P., Hardy's method of calculating factorial moments, refs., Frequency Curves and Correlation      85 160
Sir Elderton, William P., Hardy's method of calculating factorial moments, tables of $\chi^{2}$      293
Sir Galton, Francis, data from Natural Inheritance, (Example 13.4)      314
Sir Hall, A.D., data on yield of grain, (Table 1.18)      23
Sir Hardy, G.F., calculation of factorial moments      59
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте