Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach
Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: K-Theory and C*-Algebras: a friendly approach

Автор: Wegge-Olsen N.E.

Аннотация:

K-theory is often considered a complicated mathematical theory for specialists only. This book is an accessible introduction to the basics and provides detailed explanations of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed. The book then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity. Of specific interest to algebraists and geometrists, the book aims to give full instruction. No details are left out in the presentation and many instructive and generously hinted exercises are provided. Apart from K-theory, this book offers complete and self contained expositions of important advanced C*-algebraic constructions like tensor products, multiplier algebras and Hilbert modules.


Язык: en

Рубрика: Математика/Анализ/Функциональный анализ/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1993

Количество страниц: 370

Добавлена в каталог: 24.11.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stone — Cech compactification      2.C
Strict continuity      2.3.7 2.H
Strict topology      2.3
Strictly positive elements      1.2 15.4.4f
Strong equivalence of extensions      3.3.1
Strong equivalence of extensions, of projections      5.2.2
Strong isomorphism of extensions      3.2.13
Strong topology      1.5
Strong topology, metrizability of      2.3.6
Subcross norm      T.3.2 T.6.2 T.J
Subcross representation      T.5.3f
Sum of extensions      3.3.5
Suspension      6.4.5 7.2.1
Swan’s theorem      13.1.6
Technical theorem by Kasparov      2.2.15
Tensor product      Appendix T
Tensor product of $C^\ast$-algebras      1.9 T.5 T.6
Tensor product of algebras      T.2.10
Tensor product of commutative $C^\ast$-algebras      T.6.16 T.E
Tensor product of Hilbert modules      15.M
Tensor product of Hilbert spaces      T.4
Tensor product of linear maps      T.2.12 T.3.8 T.5.19
Tensor product of modules and groups      T.2.9
Tensor product of more than two spaces      T.2.7
Tensor product of operator algebras      T.4.3
Tensor product of positive functional      T.B
Tensor product of subspaces      T.3.1
Tensor product spatial      T.5
Tensor product, algebraic      T.2
Tensor product, maximal      T.6.6
Tensor product, minimal      T.5
Thorn isomorphism      9.3.3 9.K
Tietze’s extension theorem      2.3.9
Toeplitz algebra      3.2.3 3.F 5.F 11.2.2
Topological K-theory      13.3 13.E
Topological quotient space      13.D
Trace class operators      T.P
Traces in $C^\ast$-algebras      6.J
Traces in $C^\ast$-algebras, in rotation algebras      12.1
Tracial state      6.J
Triangle inequality      15.1.4
Trivial extension      3.2.1 3.1
Trivial vector bundle      13.1.4
Two sided multiplier      2.2.2
Unilateral shift operator      3.F 5.A
Uniqueness of algebraic tensor product      T.2.1
Unitary elements      1.3 §4
Unitary elements, close      4.2.4
Unitary elements, homotopies between      4.2
Unitary equivalence of projections      5.2.1
Unitizations of $C^\ast$-algebras      1.2 2.1 2.1.4 2.B
Universal group      Appendix G
Universal group, representation      1.5
Universality of algebraic tensor product      T.2.4 T.2.11
Unperforated ordered group      12.A
V(A)      6.1.1
Vector bundle      13.1.1
Vector criterion for positivity      15.2.5
Vector state      T.5.7 T.5.10f
Von Neumann algebras      1.3 1.5
Weak equivalence and weak isomorphism of extension      3.E
Weak topology      1.5
Weakly bilinear maps      T.2.9
Whitney sum of vector bundles      13.1.5
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте