Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hyvarinen A. — Independent Component Analysis
Hyvarinen A. — Independent Component Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Independent Component Analysis

Автор: Hyvarinen A.

Аннотация:

Hyvarinen and fellow researchers Juhu Karhunen and Erkki Oja (all Helsinki U. of Technology) introduce independent component analysis as a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals. Readers are intended to be from such disciplines as statistics, signal processing, neural networks, information theory, and engineering, and to have a grounding in college calculus, matrix algebra, probability theory, and statistics. Exercise problems and computer assignments facilitate the book's use in a graduate course.


Язык: en

Рубрика: Математика/Вероятность/Статистика и приложения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 505

Добавлена в каталог: 04.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Maximum likelihood, in CDMA      424. See also Likelihood
Mean function      45
Mean vector      21
Mean-square error      81 94
Mean-square error, minimization for PCA      128
MEG      407
Minimization of function      57
Minimum description length      131
Minimum-phase filter      370
Minor components      135
Mixture of gaussians      322 329
ML      See Maximum likelihood
MMSE estimator      424
MMSE-ICA detector      434 437—438
Model order choosing      131 271
Modified GTM method      323
Moment generating function      41
Moment method      84
Moments      20 37 41—42
Moments, central      22
Moments, nonpolynomial      207
Momentum term      426
Moving average (MA) process      51
Multilayer perceptron      136 328
Multipath propagation      420
Multiple access communications      417
Multiple access interference (MAI)      421
Multiuser detection      421
Mutual information      221—222 319
Mutual information, and Kullback — Leibler divergence      110
Mutual information, and likelihood      224
Mutual information, and nongaussianity      223
Mutual information, approximation of      223—224
Mutual information, definition      110
Mutual information, minimization of      221
Near-far problem      421 424
Negentropy      222
Negentropy, approximation      113 115 183
Negentropy, approximation, by cumulants      113
Negentropy, approximation, by nonpolynomial functions      115
Negentropy, as measure of nongaussianity      182
Negentropy, as nongaussianity measure      182
Negentropy, definition      112
Negentropy, optimality      277
Neural networks      36
Neurons      408
Newton's method      66
Noise      446
Noise, as independent components      295
Noise, in the ICA model      293
Noise, reduction by low-pass filtering      265
Noise, reduction by nonlinear filtering      300
Noise, reduction by PCA      268
Noise, reduction by shrinkage      300
Noise, reduction by shrinkage, application on images      398
Noise, sensor vs. source      294
Noisy ICA, application, image processing      398
Noisy ICA, application, telecommunications      423
Noisy ICA, estimation of ICs      299
Noisy ICA, estimation of ICs, by MAR      299
Noisy ICA, estimation of ICs, by maximum likelihood      299
Noisy ICA, estimation of ICs, by shrinkage      300
Noisy ICA, estimation of mixing matrix      295
Noisy ICA, estimation of mixing matrix, bias removal techniques      296
Noisy ICA, estimation of mixing matrix, by cumulant methods      298
Noisy ICA, estimation of mixing matrix, by FastICA      298
Noisy ICA, estimation of mixing matrix, by maximum likelihood      299
Nongaussianity      165
Nongaussianity, and projection pursuit      197
Nongaussianity, is interesting      197
Nongaussianity, measured by kurtosis      171 182
Nongaussianity, measured by negentropy      182
Nongaussianity, optimal measure is negentropy      277
Nonlinear BSS      315
Nonlinear BSS, definition      316
Nonlinear ICA      315
Nonlinear ICA, definition      316
Nonlinear ICA, existence and uniqueness      317
Nonlinear ICA, post-nonlinear mixtures      319
Nonlinear ICA, using ensemble learning      328
Nonlinear ICA, using modified GTM method      323
Nonlinear ICA, using self-organizing map (SOM)      320
Nonlinear mixing model      315
Nonlinearity in algorithm, choice of      276 280
Nonstationarity, and tracking      72 133 135 178
Nonstationarity, definition      46
Nonstationarity, measuring by autocorrelations      347
Nonstationarity, measuring by cross-cumulants      349
Nonstationarity, separation by      346
Oja's rule      133
On-line learning      69
Optical imaging      413
Optimization methods      57
Optimization methods, constrained      73
Optimization methods, unconstrained      63
Order statistics      226
Orthogonalization      141
Orthogonalization, Gram — Schmidt      141
Orthogonalization, symmetric      142
Overcomplete bases, and image feature extraction      311
Overcomplete bases, estimation of ICs      306
Overcomplete bases, estimation of ICs, by maximum likelihood      306
Overcomplete bases, estimation of mixing matrix      307
Overcomplete bases, estimation of mixing matrix, by FastICA      309
Overcomplete bases, estimation of mixing matrix, by maximum likelihood      307
Overlearning      268
Overlearning and PCA      269
Overlearning and priors on mixing      371
Parameter vector      78
PAST      136
Performance index      81
PET      407
Positive semidefinite      21
Post-nonlinear mixtures      316
Posterior      94
Power method, higher-order      232
Power spectrum      49
Prediction of time series      443
Preprocessing      263
Preprocessing, by PCA      267
Preprocessing, centering      154
Preprocessing, filtering      264
Preprocessing, whitening      158
Principal component analysis      125 332
Principal component analysis, and complexity      425
Principal component analysis, and ICA      139 249 251
Principal component analysis, and whitening      140
Principal component analysis, by on-line learning      132
Principal component analysis, closed-form computation      132
Principal component analysis, nonlinear      249
Principal component analysis, number of components      129
Principal component analysis, with nonquadratic criteria      137
Principal curves      249
Prior      94
Prior, conjugate      375
Prior, for mixing matrix      371
Prior, Jeffreys'      373
Prior, quadratic      373
Prior, sparse      374
Prior, sparse, for mixing matrix      375
probability density      16
Probability density, a posteriori      94
Probability density, a priori      94
Probability density, conditional      28
Probability density, double exponential      39 171
Probability density, gaussian      16 42
Probability density, generalized gaussian      40
Probability density, joint      19 22 27 30 45
Probability density, Laplacian      39 171
Probability density, marginal      19 27 29 33
Probability density, multivariate      17
Probability density, of a transformation      35
Probability density, posterior      31 328
Probability density, prior      31
Probability density, uniform      36 39 171
Projection matrix      427
Projection method      73
Projection pursuit      197 286
Pseudoinverse      87
Quasiorthogonality      310
Quasiorthogonality, in FastICA      310
RAKE detector      424 434 437—438
RAKE-ICA detector      434 438
Random variable      15
Random vector      17
Recursive least-squares, for nonlinear PCA      259
Recursive least-squares, for PCA      135
Robustness      83 182 277
Sample mean      24
Sample moment      84
Self-organizing map (SOM)      320
Semiblind methods      387 424 432
Semiparametric      204
skewness      38
Smoothing      445
SOBI      344
Sparse code shrinkage      303 398
Sparse coding      396
Sparsity, measurement of      374
Spatiotemporal ICA      377
Spatiotemporal statistics      362
Sphered random vector      140
Spreading code      418
Stability      See consistency Stationarity
Stochastic approximation      71
Stochastic gradient ascent (SGA)      133
Stochastic processes      43
Subgaussian      38
Subspace MMSE detector      434 436 438
Subspace, learning algorithm for PCA      134
Subspace, noise      131
Subspace, nonlinear learning rule      254
Subspace, signal      131
Subspaces, independent      380
Subspaces, invariant-feature      380
Superefficiency      261
Supergaussian      39
Taylor series      62
TDSEP      344
Tensor methods for ICA      229
Time averages      48
Time structure      43
Time structure, ICA estimation using      341
Toeplitz matrix      48
Tracking in a nonstationary environment      72
Transfer function      370
Unbiasedness      80
Uncorrelatedness      24 27 33
Uncorrelatedness, constraint of      192
Uniform density      36 39
Uniform density, rotated      250
Variance      22
Variance, maximization      127
Vector, gradient of function      57
Vector, valued function      58
Visual cortex      403
Wavelets      394
Wavelets and ICA      398
Wavelets as preprocessing      267
White noise      50
Whiteness      25
Whitening      140
Whitening as preprocessing in ICA      158
Whitening by PCA expansion      140
Wiener filtering      96
Wiener filtering, nonlinear      300
z-transform      369
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте